scispace - formally typeset
Search or ask a question

Showing papers by "Fundación Instituto Leloir published in 2008"


Journal ArticleDOI
TL;DR: Structural and functional evidence indicates that axons of adult-born granule cells establish synapses with hilar interneurons, mossy cells and CA3 pyramidal cells and release glutamate as their main neurotransmitter.
Abstract: Adult neurogenesis occurs in the hippocampus and the olfactory bulb of the mammalian CNS. Recent studies have demonstrated that newborn granule cells of the adult hippocampus are postsynaptic targets of excitatory and inhibitory neurons, but evidence of synapse formation by the axons of these cells is still lacking. By combining retroviral expression of green fluorescent protein in adult-born neurons of the mouse dentate gyrus with immuno-electron microscopy, we found output synapses that were formed by labeled terminals on appropriate target cells in the CA3 area and the hilus. Furthermore, retroviral expression of channelrhodopsin-2 allowed us to light-stimulate newborn granule cells and identify postsynaptic target neurons by whole-cell recordings in acute slices. Our structural and functional evidence indicates that axons of adult-born granule cells establish synapses with hilar interneurons, mossy cells and CA3 pyramidal cells and release glutamate as their main neurotransmitter.

712 citations


Journal ArticleDOI
26 May 2008-Brain
TL;DR: An unequivocal association between IL-1 overproduction and increased disease progression is demonstrated, pointing to inflammation as a risk factor for Parkinson's disease and suggesting that inflammation should be efficiently handled in patients to slow disease progression.
Abstract: Parkinson's disease is a neurodegenerative disorder with uncertain aetiology and ill-defined pathophysiology. Activated microglial cells in the substantia nigra (SN) are found in all animal models of Parkinson's disease and patients with the illness. Microglia may, however, have detrimental and protective functions in this disease. In this study, we tested the hypothesis that a sub-toxic dose of an inflammogen (lipopolysaccharide) can shift microglia to a pro-inflammatory state and exacerbate disease progression in an animal model of Parkinson's disease. Central lipopolysaccharide injection in a degenerating SN exacerbated neurodegeneration, accelerated and increased motor signs and shifted microglial activation towards a pro-inflammatory phenotype with increased interleukin-1β (IL-1β) secretion. Glucocorticoid treatment and specific IL-1 inhibition reversed these effects. Importantly, chronic systemic expression of IL-1 also exacerbated neurodegeneration and microglial activation in the SN. In vitro, IL-1 directly exacerbated 6-OHDA-triggered dopaminergic toxicity. In vivo, we found that nitric oxide was a downstream molecule of IL-1 action and partially responsible for the exacerbation of neurodegeneration observed. Thus, IL-1 exerts its exacerbating effect on degenerating dopaminergic neurons by direct and indirect mechanisms. This work demonstrates an unequivocal association between IL-1 overproduction and increased disease progression, pointing to inflammation as a risk factor for Parkinson's disease and suggesting that inflammation should be efficiently handled in patients to slow disease progression.

322 citations


Journal ArticleDOI
TL;DR: Lectin-glycoprotein association not only thwarts Golgi exit of folding intermediates and irreparably misfolded glycoproteins but also enhances folding efficiency by preventing aggregation and promoting proper disulfide bonding.

281 citations


Journal ArticleDOI
TL;DR: A novel circadian phenomenon involving extensive remodeling in the axonal terminals of the PDF circuit is described, which display higher complexity during the day and significantly lower complexity at nighttime, both under daily cycles and constant conditions.
Abstract: Clock output pathways are central to convey timing information from the circadian clock to a diversity of physiological systems, ranging from cell-autonomous processes to behavior. While the molecular mechanisms that generate and sustain rhythmicity at the cellular level are well understood, it is unclear how this information is further structured to control specific behavioral outputs. Rhythmic release of pigment dispersing factor (PDF) has been proposed to propagate the time of day information from core pacemaker cells to downstream targets underlying rhythmic locomotor activity. Indeed, such circadian changes in PDF intensity represent the only known mechanism through which the PDF circuit could communicate with its output. Here we describe a novel circadian phenomenon involving extensive remodeling in the axonal terminals of the PDF circuit, which display higher complexity during the day and significantly lower complexity at nighttime, both under daily cycles and constant conditions. In support to its circadian nature, cycling is lost in bona fide clockless mutants. We propose this clock-controlled structural plasticity as a candidate mechanism contributing to the transmission of the information downstream of pacemaker cells.

194 citations


Journal ArticleDOI
25 May 2008-Virology
TL;DR: It is proposed that specific UAR nucleotides as well as 5'-3'UAR complementarity constitute cis-acting signals involved in amplification of the dengue virus genome.

130 citations


Journal ArticleDOI
TL;DR: A novel strategy developed by melanoma cells to evade NK cell-mediated immune surveillance based on the intracellular sequestration of immature forms of MICA in the endoplasmic reticulum is identified and can be overcome by gene therapy approaches aimed at overexpressing MICA on tumor cells.
Abstract: Most tumors grow in immunocompetent hosts despite expressing NKG2D ligands (NKG2DLs) such as the MHC class I chain-related genes A and B (MICA/B). However, their participation in tumor cell evasion is still not completely understood. Here we demonstrate that several human melanomas (cell lines and freshly isolated metastases) do not express MICA on the cell surface but have intracellular deposits of this NKG2DL. Susceptibility to NK cell-mediated cytotoxicity correlated with the ratio of NKG2DLs to HLA class I molecules but not with the amounts of MICA on the cell surface of tumor cells. Transfection-mediated overexpression of MICA restored cell surface expression and resulted in an increased in vitro cytotoxicity and IFN-gamma secretion by human NK cells. In xenografted nude mice, these melanomas exhibited a delayed growth and extensive in vivo apoptosis. Retardation of tumor growth was due to NK cell-mediated antitumor activity against MICA-transfected tumors, given that this effect was not observed in NK cell-depleted mice. Also, mouse NK cells killed MICA-overexpressing melanomas in vitro. A mechanistic analysis revealed the retention of MICA in the endoplasmic reticulum, an effect that was associated with accumulation of endoH-sensitive (immature) forms of MICA, retrograde transport to the cytoplasm, and degradation by the proteasome. Our study identifies a novel strategy developed by melanoma cells to evade NK cell-mediated immune surveillance based on the intracellular sequestration of immature forms of MICA in the endoplasmic reticulum. Furthermore, this tumor immune escape strategy can be overcome by gene therapy approaches aimed at overexpressing MICA on tumor cells.

108 citations


Journal ArticleDOI
TL;DR: A model based on current and previous findings is proposed, in which hydrogen peroxide produced in the chloroplasts under high light conditions interacts with the ABA signaling network to regulate Lhcb expression, and the regulation by retrograde and phytochrome signaling can finally be separated at the target promoter level.

99 citations


Journal ArticleDOI
TL;DR: Surprisingly, granule cells born in 10‐month‐old mice, at which time the rate of neurogenesis has decreased by ∼40‐fold, reach a density of dendritic spines similar to that of neurons born in young adulthood, suggesting that the ageing hippocampus presents a suitable environment for new surviving neurons to reach a high level of complexity, comparable to those of all other dentate granules cells.
Abstract: The dentate gyrus of the hippocampus generates neurons throughout life, but adult neurogenesis exhibits a marked age-dependent decline. Although the decrease in the rate of neurogenesis has been extensively documented in the ageing hippocampus, the specific characteristics of dentate granule cells born in such a continuously changing environment have received little attention. We have used retroviral labelling of neural progenitor cells of the adult mouse dentate gyrus to study morphological properties of neurons born at different ages. Dendritic spine density was measured to estimate glutamatergic afferent connectivity. Fully mature neurons born at the age of 2 months display ∼2.3 spines μm−1 and maintain their overall morphology and spine density in 1-year-old mice. Surprisingly, granule cells born in 10-month-old mice, at which time the rate of neurogenesis has decreased by ∼40-fold, reach a density of dendritic spines similar to that of neurons born in young adulthood. Therefore, in spite of the sharp decline in cell proliferation, differentiation and overall neuronal number, the ageing hippocampus presents a suitable environment for new surviving neurons to reach a high level of complexity, comparable to that of all other dentate granule cells.

96 citations


Journal ArticleDOI
TL;DR: These protozoan OTases resemble the prokaryotic enzymes with respect to their architecture, but they used substrates typical for eukaryotic cells: N-X-S/T sequons in proteins and dolicholpyrophosphate-linked high mannose oligosaccharides.
Abstract: The transfer of lipid-linked oligosaccharide to asparagine residues of polypeptide chains is catalyzed by oligosaccharyltransferase (OTase). In most eukaryotes, OTase is a hetero-oligomeric complex composed of eight different proteins, in which the STT3 component is believed to be the catalytic subunit. In the parasitic protozoa Leishmania major, four STT3 paralogues, but no homologues to the other OTase components seem to be encoded in the genome. We expressed each of the four L. major STT3 proteins individually in Saccharomyces cerevisiae and found that three of them, LmSTT3A, LmSTT3B, and LmSTT3D, were able to complement a deletion of the yeast STT3 locus. Furthermore, LmSTT3D expression suppressed the lethal phenotype of single and double deletions in genes encoding other essential OTase subunits. LmSTT3 proteins did not incorporate into the yeast OTase complex but formed a homodimeric enzyme, capable of replacing the endogenous, multimeric enzyme of the yeast cell. Therefore, these protozoan OTases resemble the prokaryotic enzymes with respect to their architecture, but they used substrates typical for eukaryotic cells: N-X-S/T sequons in proteins and dolicholpyrophosphate-linked high mannose oligosaccharides.

87 citations


Journal ArticleDOI
TL;DR: It is suggested that missense mutations in PSEN genes can alter a range of key γ-secretase activities to produce an array of subtly different biochemical, neuropathological and clinical manifestations.
Abstract: Background: Mutations in the presenilin (PSEN) genes are associated with early-onset familial Alzheimer's disease (FAD). Biochemical characterizations and comparisons have revealed that many PSEN mutations alter γ-secretase activity to promote accumulation of toxic Aβ42 peptides. In this study, we compared the histopathologic and biochemical profiles of ten FAD cases expressing independent PSEN mutations and determined the degradation patterns of amyloid-β precursor protein (AβPP), Notch, N-cadherin and Erb-B4 by γ-secretase. In addition, the levels of Aβ40/42 peptides were quantified by ELISA. Results: We observed a wide variation in type, number and distribution of amyloid deposits and neurofibrillary tangles. Four of the ten cases examined exhibited a substantial enrichment in the relative proportions of Aβ40 over Aβ42. The AβPP N-terminal and C-terminal fragments and Tau species, assessed by Western blots and scanning densitometry, also demonstrated a wide variation. The Notch-1 intracellular domain was negligible by Western blotting in seven PSEN cases. There was significant N-cadherin and Erb-B4 peptide heterogeneity among the different PSEN mutations. Conclusion: These observations imply that missense mutations in PSEN genes can alter a range of key γ-secretase activities to produce an array of subtly different biochemical, neuropathological and clinical manifestations. Beyond the broad common features of dementia, plaques and tangles, the various PSEN mutations resulted in a wide heterogeneity and complexity and differed from sporadic AD.

66 citations


Journal ArticleDOI
TL;DR: It is concluded that DC/Apo-Nec vaccine is safe, well tolerated and it may induce specific immunity against melanoma Ags and patients with a low-producing IL-10 polymorphism appear to have a worst prognosis.
Abstract: Background Sixteen melanoma patients (1 stage IIC, 8 stage III, and 7 stage IV) were treated in a Phase I study with a vaccine (DC/Apo-Nec) composed of autologous dendritic cells (DCs) loaded with a mixture of apoptotic/necrotic allogeneic melanoma cell lines (Apo-Nec), to evaluate toxicity and immune responses. Also, IL-10 1082 genotype was analyzed in an effort to predict disease progression.

Journal ArticleDOI
TL;DR: SPARC is a matricellular glycoprotein that is expressed by hepatic stellate cells and is overexpressed in fibrotic livers and the in vivo role of SPARC is investigated in experimentally induced liver fibrosis in rats.
Abstract: Background The interaction between fibrogenic cells and extracellular matrix plays a role in liver fibrosis, yet the mechanisms are largely unknown. Secreted protein, acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that is expressed by hepatic stellate cells and is overexpressed in fibrotic livers. We investigated the in vivo role of SPARC in experimentally induced liver fibrosis in rats. Methods A recombinant adenovirus carrying antisense SPARC was constructed (AdasSPARC). Advanced liver fibrosis was induced in Sprague-Dawley rats by prolonged intraperitoneal administration of thioacetamide. Animals received injections of AdasSPARC or Adβgal (control adenovirus) via the tail vein and directly into the liver 1 week after the first dose. The pathological changes in liver tissues and indices of fibrosis were assessed at eight weeks. Expression of SPARC, transforming growth factor (TGF)-β and α-smooth muscle actin were evaluated by quantitative real-time polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay and immunohistochemistry. Results Hepatic SPARC expression significantly increased during the development of liver fibrosis. AdasSPARC markedly attenuated the development of hepatic fibrosis in rats treated with thiocetamide, as assessed by decreased collagen deposition, lower hepatic content of hydroxyproline and less advanced morphometric stage of fibrosis. AdasSPARC treatment reduced inflammatory activity (Knodell score) and suppressed transdifferentiation of hepatic stellate cell to the myofibroblasts like phenotype in vivo. Furthermore, in vitro inhibition of SPARC on hepatic stellate cells decreases the production of TGF-β. Conclusions This is the first study to demonstrate that knockdown of hepatic SPARC expression ameliorates thioacetamide-induced liver fibrosis in rats with chronic liver injury. SPARC is a potential target for gene therapy in liver fibrosis. Copyright © 2008 John Wiley & Sons, Ltd.

Journal ArticleDOI
10 Apr 2008-Oncogene
TL;DR: It is observed that overexpression of the RAC3 (receptor-associated co-activator-3) p160 co-Activator inhibits hydrogen peroxide-induced cell death in human embryonic kidney 293 (HEK293) cells, demonstrating that there are several molecular pathways that could be affected by their overeexpression, including those not restricted to steroid regulation or the nuclear action of co- Activators.
Abstract: The p160 nuclear receptor co-activators represent a family of molecules, which are recruited by steroid nuclear receptors as well as other transcription factors that are overexpressed in several tumors. We investigated the role of one member of this family on the sensitivity of cells to apoptosis. We observed that overexpression of the RAC3 (receptor-associated co-activator-3) p160 co-activator inhibits hydrogen peroxide-induced cell death in human embryonic kidney 293 (HEK293) cells. The mechanism involves the activation of anti-apoptotic pathways mediated through enhanced nuclear factor kappa B (NF-kappaB) activity, inhibition of caspase-9 activation, diminished apoptotic-inducing factor (AIF) nuclear localization and a change in the activation pattern of several kinases, including an increase in both AKT and p38 kinase activities, and inhibition of ERK2. Moreover, RAC3 has been found associated with a protein complex containing AIF, Hsp90 and dynein, suggesting a role for the co-activator in the cytoplasmatic nuclear transport of these proteins associated with cytoskeleton. These results demonstrate that there are several molecular pathways that could be affected by their overexpression, including those not restricted to steroid regulation or the nuclear action of co-activators, which results in diminished sensitivity to apoptosis. Furthermore, this could represent one mechanism by which co-activators contribute to tumor development.

Journal ArticleDOI
TL;DR: The results support the notion that optimal substrate degradation by IDE may require its association with organized-DRMs, and the concept that mis-location of Aβ degrading proteases away from DRMs may impair the physiological turn-over of A β in vivo deserves further investigation.
Abstract: Insulin degrading enzyme (IDE) is implicated in the regulation of amyloid β (Aβ) steady-state levels in the brain, and its deficient expression and/or activity may be a risk factor in sporadic Alzheimer's disease (AD). Although IDE sub-cellular localization has been well studied, the compartments relevant to Aβ degradation remain to be determined. Our results of live immunofluorescence, immuno gold electron-microscopy and gradient fractionation concurred to the demonstration that endogenous IDE from brain tissues and cell cultures is, in addition to its other localizations, a detergent-resistant membrane (DRM)-associated metallopeptidase. Our pulse chase experiments were in accordance with the existence of two pools of IDE: the cytosolic one with a longer half-life and the membrane-IDE with a faster turn-over. DRMs-associated IDE co-localized with Aβ and its distribution (DRMs vs. non-DRMs) and activity was sensitive to manipulation of lipid composition in vitro and in vivo. When IDE was mis-located from DRMs by treating cells with methyl-β-cyclodextrin (MβCD), endogenous Aβ accumulated in the extracellular space and exogenous Aβ proteolysis was impaired. We detected a reduced amount of IDE in DRMs of membranes isolated from mice brain with endogenous reduced levels of cholesterol (Chol) due to targeted deletion of one seladin-1 allele. We confirmed that a moderate shift of IDE from DRMs induced a substantial decrement on IDE-mediated insulin and Aβ degradation in vitro. Our results support the notion that optimal substrate degradation by IDE may require its association with organized-DRMs. Alternatively, DRMs but not other plasma membrane regions, may act as platforms where Aβ accumulates, due to its hydrophobic properties, reaching local concentration close to its Km for IDE facilitating its clearance. Structural integrity of DRMs may also be required to tightly retain insulin receptor and IDE for insulin proteolysis. The concept that mis-location of Aβ degrading proteases away from DRMs may impair the physiological turn-over of Aβ in vivo deserves further investigation in light of therapeutic strategies based on enhancing Aβ proteolysis in which DRM protease-targeting may need to be taken into account.

Journal ArticleDOI
TL;DR: Show that a natively folded recombinant IDE was capable of forming a stable complex with Abeta that resisted dissociation after treatment with strong denaturants, suggestive of an unprecedented mechanism of conformation-dependent substrate binding that may perturb Abeta clearance, insulin turnover, and promote AD pathogenesis.

Journal ArticleDOI
TL;DR: A computational study of the E2–DNA interaction in all 73 types within the alpha papillomavirus genus, including all known mucosal types, indicates that E2 proteins have similar DNA discrimination properties.
Abstract: Mucosal human papillomaviruses (HPVs) are etiological agents of oral, anal and genital cancer. Properties of high- and low-risk HPV types cannot be reduced to discrete molecular traits. The E2 protein regulates viral replication and transcription through a finely tuned interaction with four sites at the upstream regulatory region of the genome. A computational study of the E2–DNA interaction in all 73 types within the alpha papillomavirus genus, including all known mucosal types, indicates that E2 proteins have similar DNA discrimination properties. Differences in E2–DNA interaction among HPV types lie mostly in the target DNA sequence, as opposed to the amino acid sequence of the conserved DNA-binding alpha helix of E2. Sequence logos of natural and in vitro selected sites show an asymmetric pattern of conservation arising from indirect readout, and reveal evolutionary pressure for a putative methylation site. Based on DNA sequences only, we could predict differences in binding energies with a standard deviation of 0.64 kcal/mol. These energies cluster into six discrete affinity hierarchies and uncovered a fifth E2-binding site in the genome of six HPV types. Finally, certain distances between sites, affinity hierarchies and their eventual changes upon methylation, are statistically associated with high-risk types.

Book ChapterDOI
07 Oct 2008
TL;DR: It is found that mutations within CS or UAR at the 5' or 3' ends of the RNA that interfere with base pairing did not significantly affect translation of the input RNA but seriously compromised or abolished RNA synthesis.
Abstract: Sequences and structures present at the 5' and 3' UTRs of RNA viruses play crucial roles in the initiation and regulation of translation, RNA synthesis and viral assembly. In dengue virus, as well as in other mosquito-borne flaviviruses, the presence of complementary sequences at the ends of the genome mediate long-range RNA-RNA interactions. Dengue virus RNA displays two pairs of complementary sequences (CS and UAR) required for genome circularization and viral viability. In order to study the molecular mechanism by which these RNA-RNA interactions participate in the viral life cycle, we developed a dengue virus replicon system. RNA transfection of the replicon in mosquito and mammalian cells allows discrimination between RNA elements involved in translation and RNA synthesis. We found that mutations within CS or UAR at the 5' or 3' ends of the RNA that interfere with base pairing did not significantly affect translation of the input RNA but seriously compromised or abolished RNA synthesis. Furthermore, a systematic mutational analysis of UAR sequences indicated that, beside the role in RNA cyclization, specific nucleotides within UAR are also important for efficient RNA synthesis.

Journal ArticleDOI
24 Oct 2008-PLOS ONE
TL;DR: The results suggest that the presence of a large and diverse trans-sialidase family might be required to prevent the inhibitory response against this essential enzyme and might thus constitute a novel strategy of T. cruzi to evade the host immune system.
Abstract: The sialic acid present in the protective surface mucin coat of Trypanosoma cruzi is added by a membrane anchored trans-sialidase (TcTS), a modified sialidase that is expressed from a large gene family. In this work, we analyzed single domain camelid antibodies produced against trans-sialidase. Llamas were immunized with a recombinant trans-sialidase and inhibitory single-domain antibody fragments were obtained by phage display selection, taking advantage of a screening strategy using an inhibition test instead of the classic binding assay. Four single domain antibodies displaying strong trans-sialidase inhibition activity against the recombinant enzyme were identified. They share the same complementarity-determining region 3 length (17 residues) and have very similar sequences. This result indicates that they likely derived from a unique clone. Probably there is only one structural solution for tight binding inhibitory antibodies against the TcTS used for immunization. To our surprise, this single domain antibody that inhibits the recombinant TcTS, failed to inhibit the enzymatic activity present in parasite extracts. Analysis of individual recombinant trans-sialidases showed that enzymes expressed from different genes were inhibited to different extents (from 8 to 98%) by the llama antibodies. Amino acid changes at key positions are likely to be responsible for the differences in inhibition found among the recombinant enzymes. These results suggest that the presence of a large and diverse trans-sialidase family might be required to prevent the inhibitory response against this essential enzyme and might thus constitute a novel strategy of T. cruzi to evade the host immune system.

Journal ArticleDOI
TL;DR: Surprisingly, direct sequence readout establishes in the transition state and constitutes the bottleneck of complex formation, and the overall picture of this two-state route largely agrees with a smooth energy landscape for binding that speeds up DNA recognition.
Abstract: We describe the formation of protein-DNA contacts in the two-state route for DNA sequence recognition by a transcriptional regulator. Surprisingly, direct sequence readout establishes in the transition state and constitutes the bottleneck of complex formation. Although a few nonspecific ionic interactions are formed at this early stage, they mainly play a stabilizing role in the final consolidated complex. The interface is fairly plastic in the transition state, likely because of a high level of hydration. The overall picture of this two-state route largely agrees with a smooth energy landscape for binding that speeds up DNA recognition. This "direct" two-state route differs from the parallel multistep pathway described for this system, which involves nonspecific contacts and at least two intermediate species that must involve substantial conformational rearrangement in either or both macromolecules.

Journal ArticleDOI
TL;DR: The abundant accretion of vascular amyloid, despite low AbetaPP transgene expression levels, suggests that inefficient Abeta proteolysis because of conformational changes and dimerization may be key pathogenic factors in this animal model.
Abstract: Alzheimer's disease (AD) is characterized by the accumulation of extracellular insoluble amyloid, primarily derived from polymerized amyloid-beta (Abeta) peptides. We characterized the chemical composition of the Abeta peptides deposited in the brain parenchyma and cerebrovascular walls of triple transgenic Tg-SwDI mice that produce a rapid and profuse Abeta accumulation. The processing of the N- and C-terminal regions of mutant AbetaPP differs substantially from humans because the brain parenchyma accumulates numerous, diffuse, nonfibrillar plaques, whereas the thalamic microvessels harbor overwhelming amounts of compact, fibrillar, thioflavine-S- and apolipoprotein E-positive amyloid deposits. The abundant accretion of vascular amyloid, despite low AbetaPP transgene expression levels, suggests that inefficient Abeta proteolysis because of conformational changes and dimerization may be key pathogenic factors in this animal model. The disruption of amyloid plaque cores by immunotherapy is accompanied by increased perivascular deposition in both humans and transgenic mice. This analogous susceptibility and response to the disruption of amyloid deposits suggests that Tg-SwDI mice provide an excellent model in which to study the functional aftermath of immunotherapeutic interventions. These mice might also reveal new avenues to promote amyloidogenic AbetaPP processing and fundamental insights into the faulty degradation and clearance of Abeta in AD, pivotal issues in understanding AD pathophysiology and the assessment of new therapeutic agents.

Journal ArticleDOI
TL;DR: The biological and structural data reported here shed light on the molecular basis for donor and acceptor selectivity in this glycosyltransferase family and provide a rationale to obtain new polysaccharides by varying residues in the conserved α/β/α structural motif of GumK.

Journal ArticleDOI
TL;DR: A complete understanding of the deleterious side effects of membrane bound Aβ as a consequence of γ-secretase alterations is needed to understand Alzheimer’s disease pathophysiology and will aid in the design of therapeutic interventions.
Abstract: Presenilin (PS) mutations enhance the production of the Abeta42 peptide that is derived from the amyloid precursor protein (APP) The pathway(s) by which the Abeta42 species is preferentially produced has not been elucidated, nor is the mechanism by which PS mutations produce early-onset dementia established Using a combination of histological, immunohistochemical, biochemical, and mass spectrometric methods, we examined the structural and morphological nature of the amyloid species produced in a patient expressing the PS1 280Glu-->Ala familial Alzheimer's disease mutation Abundant diffuse plaques were observed that exhibited a staining pattern and morphology distinct from previously described PS cases, as well as discreet amyloid plaques within the white matter In addition to finding increased amounts of CT99 and Abeta42 peptides, our investigation revealed the presence of a complex array of Abeta peptides substantially longer than 42/43 amino acid residue species The increased hydrophobic nature of longer Abeta species retained within the membrane walls could impact the structure and function of plasma membrane and organelles These C-terminally longer peptides may, through steric effects, dampen the rate of turnover by critical amyloid degrading enzymes such as neprilysin and insulin degrading enzyme A complete understanding of the deleterious side effects of membrane bound Abeta as a consequence of gamma-secretase alterations is needed to understand Alzheimer's disease pathophysiology and will aid in the design of therapeutic interventions

Journal ArticleDOI
01 Oct 2008-Prion
TL;DR: The findings warrant further research regarding a possible general and novel interaction between amyloidogenic peptides and other Zn2+metallopeptidases with an IDE-like fold and a substrate conformation-dependent recognition mechanism.
Abstract: Insulin-degrading enzyme (IDE) is a conserved Zn(2+)metalloendopeptidase involved in insulin degradation and in the maintenance of brain steady-state levels of amyloid beta peptide (Abeta) of Alzheimer's disease (AD). Our recent demonstration that IDE and Abeta are capable of forming a stoichiometric and extremely stable complex raises several intriguing possibilities regarding the role of this unique protein-peptide interaction in physiological and pathological conditions. These include a protective cellular function of IDE as a "dead-end chaperone" alternative to its proteolytic activity and the potential impact of the irreversible binding of Abeta to IDE upon its role as a varicella zoster virus receptor. In a pathological context, the implications for insulin signaling and its relationship to AD pathogenesis are discussed. Moreover, our findings warrant further research regarding a possible general and novel interaction between amyloidogenic peptides and other Zn(2+)metallopeptidases with an IDE-like fold and a substrate conformation-dependent recognition mechanism.

Journal ArticleDOI
TL;DR: The x-ray structure of the mature ectodomain of IA-2 (meIA-2) is solved and it is discovered that meIA-1 is self-proteolyzed in vitro by reactive oxygen species, suggesting the possibility of a new shedding mechanism that might be significant in normal function or pathological processes.

Journal ArticleDOI
08 Oct 2008-PLOS ONE
TL;DR: This mutant recapitulates two important features of human neurodegenerative diseases, i.e., vulnerability of certain neuronal populations and progressive degeneration, offering a unique scenario in which to unravel the specific mechanisms in an easily tractable organism.
Abstract: Drosophila is a well-established model to study the molecular basis of neurodegenerative diseases. We carried out a misexpression screen to identify genes involved in neurodegeneration examining locomotor behavior in young and aged flies. We hypothesized that a progressive loss of rhythmic activity could reveal novel genes involved in neurodegenerative mechanisms. One of the interesting candidates showing progressive arrhythmicity has reduced enabled (ena) levels. ena down-regulation gave rise to progressive vacuolization in specific regions of the adult brain. Abnormal staining of pre-synaptic markers such as cystein string protein (CSP) suggest that axonal transport could underlie the neurodegeneration observed in the mutant. Reduced ena levels correlated with increased apoptosis, which could be rescued in the presence of p35, a general Caspase inhibitor. Thus, this mutant recapitulates two important features of human neurodegenerative diseases, i.e., vulnerability of certain neuronal populations and progressive degeneration, offering a unique scenario in which to unravel the specific mechanisms in an easily tractable organism.

Journal ArticleDOI
TL;DR: These findings provide evidence that binding of bacterial DNA to neutrophils is a receptor-mediated process that conditions the ability of DNA to trigger cell activation, and speculate that neutrophil recognition ofacterial DNA might be modulated by the balance of agonists present at inflammatory foci.

Journal ArticleDOI
TL;DR: The results indicate the presence of an additional cysteine peptidase activity on a lectin previously described, which exhibited substrate specificity and hydrolyzed natural substrates such as alpha-casein, azocasein, haemoglobin and gelatin.

Journal ArticleDOI
TL;DR: This review focuses on the properties of the DNA binding domain of human papillomavirus strain 16 in solution, integrating structure, dynamics, folding, stability, conformational equilibria, and DNA binding mechanism.
Abstract: The DNA binding domain of the E2 master regulator from papillomaviruses is the primary effector for most the essential activities controlled by this protein. In this review we focus on the properties of the DNA binding domain of human papillomavirus strain 16 in solution, integrating structure, dynamics, folding, stability, conformational equilibria, and DNA binding mechanism. We discuss the relevance of these processes for the different biological activities, broadening the horizon for antiviral development. In addition, the particular fold of the DNA binding domain only shared with the Epstein-Barr nuclear antigen EBNA1, suggests a link between this unique architecture and the function of viral origin binding proteins of this kind. Finally, the E2 DNA binding domain proved to be an excellent model for addressing fundamental problems of DNA recognition mechanisms and folding of intertwined dimers.

Journal ArticleDOI
01 Nov 2008-Genetics
TL;DR: Most aspects of the tfl1 phenotype are lost in the cry1 cry2 double-mutant background lacking cryptochromes 1 and 2 and normal CRY control of photoperiod-dependent flowering and hypocotyl growth inhibition requires a functional TFL1 gene.
Abstract: TERMINAL FLOWER 1 (TFL1) encodes a protein with similarity to animal phosphatidylethanolamine-binding proteins and is required for normal trafficking to the protein storage vacuole. In Arabidopsis thaliana the tfl1 mutation produces severe developmental abnormalities. Here we show that most aspects of the tfl1 phenotype are lost in the cry1 cry2 double-mutant background lacking cryptochromes 1 and 2. The inhibition of hypocotyl growth by light is reduced in the tfl1 mutant but this effect is absent in the cry1 or cry2 mutant background. Although the promotion of flowering under long rather than short days is a key function of cryptochromes, in the tfl1 background, cryptochromes promoted flowering under short days. Thus, normal CRY control of photoperiod-dependent flowering and hypocotyl growth inhibition requires a functional TFL1 gene.

Journal ArticleDOI
TL;DR: A mutation affecting clock function associated with a molecule involved in circuit assembly and maintenance is presented, suggesting that ROBO could alter the communication within different clusters of the circadian network, thus impinging on two basic properties, periodicity and/or rhythmicity.
Abstract: Great efforts have been directed to the dissection of the cell-autonomous circadian oscillator in Drosophila. However, less information is available regarding how this oscillator controls rhythmic rest-activity cycles. We have identified a viable allele of roundabout, robo(hy), where the period of locomotor activity is shortened. From its role in axon-pathfinding, we anticipated developmental defects in clock-relevant structures. However, robo(hy) produced minor defects in the architecture of the circuits essential for rhythmic behaviour. ROBO's presence within the circadian circuit strengthened the possibility of a novel role for ROBO at this postdevelopmental stage. Genetic interactions between pdf (01) and robo(hy) suggest that ROBO could alter the communication within different clusters of the circadian network, thus impinging on two basic properties, periodicity and/or rhythmicity. Early translocation of PERIOD to the nucleus in robo(hy) pacemaker cells indicated that shortened activity rhythms were derived from alterations in the molecular oscillator. Herein we present a mutation affecting clock function associated with a molecule involved in circuit assembly and maintenance.