scispace - formally typeset
Search or ask a question

Showing papers by "Fundación Instituto Leloir published in 2021"


Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations


Journal ArticleDOI
TL;DR: To eliminate cancer health disparities, it will be necessary to facilitate access to, and utilisation of, health services to all individuals, and to address structural inequities, including racism, that disproportionally affect racial/ethnic minorities in the USA.
Abstract: There are well-established disparities in cancer incidence and outcomes by race/ethnicity that result from the interplay between structural, socioeconomic, socio-environmental, behavioural and biological factors. However, large research studies designed to investigate factors contributing to cancer aetiology and progression have mainly focused on populations of European origin. The limitations in clinicopathological and genetic data, as well as the reduced availability of biospecimens from diverse populations, contribute to the knowledge gap and have the potential to widen cancer health disparities. In this review, we summarise reported disparities and associated factors in the United States of America (USA) for the most common cancers (breast, prostate, lung and colon), and for a subset of other cancers that highlight the complexity of disparities (gastric, liver, pancreas and leukaemia). We focus on populations commonly identified and referred to as racial/ethnic minorities in the USA-African Americans/Blacks, American Indians and Alaska Natives, Asians, Native Hawaiians/other Pacific Islanders and Hispanics/Latinos. We conclude that even though substantial progress has been made in understanding the factors underlying cancer health disparities, marked inequities persist. Additional efforts are needed to include participants from diverse populations in the research of cancer aetiology, biology and treatment. Furthermore, to eliminate cancer health disparities, it will be necessary to facilitate access to, and utilisation of, health services to all individuals, and to address structural inequities, including racism, that disproportionally affect racial/ethnic minorities in the USA.

383 citations


Journal ArticleDOI
21 Oct 2021-Science
TL;DR: In this paper, the authors investigated the contribution of adult hippocampal performance underlies psychiatric comorbidities and cognitive impairments in patients with neurodegenerative disorders, and found that the hippocampus' performance underlie psychiatric disorders.
Abstract: Disrupted hippocampal performance underlies psychiatric comorbidities and cognitive impairments in patients with neurodegenerative disorders. To understand the contribution of adult hippocampal neu...

94 citations


Journal ArticleDOI
TL;DR: The renewed PED will be useful for researchers interested in the atomic-level understanding of IDPs function, and promote the rational, structure-based design of IDP-targeting drugs.
Abstract: The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.

84 citations


Journal ArticleDOI
TL;DR: The Database of Intrinsically Disordered Proteins (DisProt) as discussed by the authors is a repository of manually curated annotations of intrinsically disordered proteins and regions from the literature, including a restyled web interface.
Abstract: The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.

74 citations


Journal ArticleDOI
09 Jul 2021
TL;DR: In this article, the authors evaluated SARS-CoV-2-specific antibody responses after Sputnik V vaccination of healthcare workers in Argentina, measuring IgG anti-spike titers and neutralizing capacity after one and two doses in a cohort of naive or previously infected volunteers.
Abstract: Massive vaccination offers great promise for halting the global COVID-19 pandemic. However, limited supply and uneven vaccine distribution create an urgent need to optimize vaccination strategies. We evaluate SARS-CoV-2-specific antibody responses after Sputnik V vaccination of healthcare workers in Argentina, measuring IgG anti-spike titers and neutralizing capacity after one and two doses in a cohort of naive or previously infected volunteers. By 21 days after receiving the first dose of vaccine, 94% of naive participants develop spike-specific IgG antibodies. A single Sputnik V dose elicits higher antibody levels and virus neutralizing capacity in previously infected individuals than in naive ones receiving the full two-dose schedule. The high seroconversion rate after a single dose in naive participants suggests a benefit of delaying second dose administration to increase the number of people vaccinated. The data presented provide information for guiding public health decisions in light of the current global health emergency.

58 citations


Journal ArticleDOI
TL;DR: In this article, the authors report the emergency development and application of a robust serologic test to evaluate acute and convalescent antibody responses to SARS-CoV-2 in Argentina.
Abstract: We report the emergency development and application of a robust serologic test to evaluate acute and convalescent antibody responses to SARS-CoV-2 in Argentina. The assays, COVIDAR IgG and IgM, which were produced and provided for free to health authorities, private and public health institutions and nursing homes, use a combination of a trimer stabilized spike protein and the receptor binding domain (RBD) in a single enzyme-linked immunosorbent assay (ELISA) plate. Over half million tests have already been distributed to detect and quantify antibodies for multiple purposes, including assessment of immune responses in hospitalized patients and large seroprevalence studies in neighborhoods, slums and health care workers, which resulted in a powerful tool for asymptomatic detection and policy making in the country. Analysis of antibody levels and longitudinal studies of symptomatic and asymptomatic SARS-CoV-2 infections in over one thousand patient samples provided insightful information about IgM and IgG seroconversion time and kinetics, and IgM waning profiles. At least 35% of patients showed seroconversion within 7 days, and 95% within 45 days of symptoms onset, with simultaneous or close sequential IgM and IgG detection. Longitudinal studies of asymptomatic cases showed a wide range of antibody responses with median levels below those observed in symptomatic patients. Regarding convalescent plasma applications, a protocol was standardized for the assessment of end point IgG antibody titers with COVIDAR with more than 500 plasma donors. The protocol showed a positive correlation with neutralizing antibody titers, and was used for clinical trials and therapies across the country. Using this protocol, about 80% of convalescent donor plasmas were potentially suitable for therapies. Here, we demonstrate the importance of providing a robust and specific serologic assay for generating new information about antibody kinetics in infected individuals and mitigation policies to cope with pandemic needs.

56 citations


Journal ArticleDOI
Mario A. Parra1, Sandra Baez2, Lucas Sedeño3, Cecilia Gonzalez Campo4, Hernando Santamaría-García5, Ivan Aprahamian, Paulo Henrique Ferreira Bertolucci6, Julián Bustin7, Maria Aparecida Camargos Bicalho8, Carlos Cano-Gutierrez5, Paulo Caramelli8, Marcia Lorena Fagundes Chaves9, Patricia Cogram3, Bárbara Costa Beber10, Felipe A. Court11, Leonardo Cruz de Souza8, Nilton Custodio, Andres Damian12, Myriam de la Cruz13, Roberta Diehl Rodriguez14, Sonia Maria Dozzi Brucki14, Laís Fajersztajn13, Gonzalo A. Farías15, Fernanda G. De Felice16, Raffaele Ferrari17, Fabricio Ferreira de Oliveira6, Sergio T. Ferreira16, Ceres Ferretti14, Marcio Luiz Figueredo Balthazar18, Norberto Anizio Ferreira Frota19, Patricio Fuentes15, Adolfo M. García3, Patricia J. Garcia20, Fábio Henrique de Gobbi Porto14, Lissette Duque Peñailillo, Henry Engler12, Irene Maier, Ignacio F. Mata21, Christian Gonzalez-Billault15, Oscar L. Lopez22, Laura Morelli23, Ricardo Nitrini14, Yakeel T. Quiroz24, Alejandra Guerrero Barragan25, David Huepe26, Fabricio Joao Pio, Claudia K. Suemoto14, Renata Kochhann27, Silvia Kochen28, Fiona Kumfor29, Serggio Lanata13, Bruce L. Miller13, Letícia Lessa Mansur14, Mirna Lie Hosogi14, Patricia Lillo15, Jorge J. Llibre Guerra13, David Lira, Francisco Lopera30, Adelina Comas31, José Alberto Avila-Funes, Ana Luisa Sosa, Claudia Ramos13, Elisa de Paula França Resende13, Heather M. Snyder32, Ioannis Tarnanas13, Jenifer Yokoyama13, Juan de Jesús Llibre, Juan F. Cardona33, Katherine L. Possin13, Kenneth S. Kosik34, Rosa Montesinos, Sebastian Moguilner13, P. Solis28, Renata Eloah de Lucena Ferretti-Rebustini14, Jeronimo Martin Ramirez35, Diana Matallana5, Lingani Mbakile-Mahlanza13, Alyne Mendonca Marques Ton, Ronnielly Melo Tavares, Eliane Correa Miotto14, Graciela Muniz-Terrera36, Luis Arnoldo Muñoz-Nevárez13, David Orozco37, Maira Okada de Oliveira13, Olivier Piguet29, Maritza Pintado Caipa13, Stefanie Danielle Piña Escudero13, Lucas Porcello Schilling27, André Luiz Rodrigues Palmeira, Mônica Sanches Yassuda14, Jose Manuel Santacruz-Escudero5, Rodrigo B. Serafim16, Jerusa Smid14, Andrea Slachevsky38, Cecilia Serrano, Marcio Soto-Añari, Leonel T. Takada14, Lea T. Grinberg14, Antônio Lúcio Teixeira8, Maira Tonidandel Barbosa39, Dominic Trépel40, Agustín Ibáñez1 
TL;DR: This work summarizes evidence‐based strategies and describes strategies supporting the knowledge creation stage that underpins the translational impact of KtAF, the Knowledge to Action Framework for dementia.
Abstract: Across Latin American and Caribbean countries (LACs), the fight against dementia faces pressing challenges, such as heterogeneity, diversity, political instability, and socioeconomic disparities. These can be addressed more effectively in a collaborative setting that fosters open exchange of knowledge. In this work, the Latin American and Caribbean Consortium on Dementia (LAC-CD) proposes an agenda for integration to deliver a Knowledge to Action Framework (KtAF). First, we summarize evidence-based strategies (epidemiology, genetics, biomarkers, clinical trials, nonpharmacological interventions, networking, and translational research) and align them to current global strategies to translate regional knowledge into transformative actions. Then we characterize key sources of complexity (genetic isolates, admixture in populations, environmental factors, and barriers to effective interventions), map them to the above challenges, and provide the basic mosaics of knowledge toward a KtAF. Finally, we describe strategies supporting the knowledge creation stage that underpins the translational impact of KtAF.

55 citations


Journal ArticleDOI
17 Mar 2021-Neuron
TL;DR: This paper found that the theta frequency of local field potentials and spike activity is linearly related to positive acceleration, but not negative acceleration or speed, which is an artifact caused by the fact that the speed of freely moving animals could not be systematically disentangled from acceleration.

52 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, and cell signaling.
Abstract: The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the μ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin β3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.

51 citations



Journal ArticleDOI
TL;DR: In this paper, the authors provide an update on recent findings about the integration of light signals upstream of FT and tissue-specific events that occur in the shoot apical meristem (SAM) to balance flower production with SAM endurance.

Journal ArticleDOI
TL;DR: A review of gene therapy-based anti-glioblastoma treatment can be found in this paper, where the authors highlight the progress, prospects and remaining challenges of gene therapies aiming at broadening our understanding and highlighting the therapeutic arsenal for GBM.
Abstract: Glioblastoma (GBM) is the most common and aggressive primary brain tumor in the adult population and it carries a dismal prognosis. Inefficient drug delivery across the blood brain barrier (BBB), an immunosuppressive tumor microenvironment (TME) and development of drug resistance are key barriers to successful glioma treatment. Since gliomas occur through sequential acquisition of genetic alterations, gene therapy, which enables to modification of the genetic make-up of target cells, appears to be a promising approach to overcome the obstacles encountered by current therapeutic strategies. Gene therapy is a rapidly evolving field with the ultimate goal of achieving specific delivery of therapeutic molecules using either viral or non-viral delivery vehicles. Gene therapy can also be used to enhance immune responses to tumor antigens, reprogram the TME aiming at blocking glioma-mediated immunosuppression and normalize angiogenesis. Nano-particles-mediated gene therapy is currently being developed to overcome the BBB for glioma treatment. Another approach to enhance the anti-glioma efficacy is the implementation of viro-immunotherapy using oncolytic viruses, which are immunogenic. Oncolytic viruses kill tumor cells due to cancer cell-specific viral replication, and can also initiate an anti-tumor immunity. However, concerns still remain related to off target effects, and therapeutic and transduction efficiency. In this review, we describe the rationale and strategies as well as advantages and disadvantages of current gene therapy approaches against gliomas in clinical and preclinical studies. This includes different delivery systems comprising of viral, and non-viral delivery platforms along with suicide/prodrug, oncolytic, cytokine, and tumor suppressor-mediated gene therapy approaches. In addition, advances in glioma treatment through BBB-disruptive gene therapy and anti-EGFRvIII/VEGFR gene therapy are also discussed. Finally, we discuss the results of gene therapy-mediated human clinical trials for gliomas. In summary, we highlight the progress, prospects and remaining challenges of gene therapies aiming at broadening our understanding and highlighting the therapeutic arsenal for GBM.

Journal ArticleDOI
22 Jan 2021-iScience
TL;DR: In this paper, the important role of reactive oxygen species (ROS) as growth regulators during plant root developmental processes such as in meristem maintenance, root elongation, and in lateral root, root hair, endodermis, and vascular tissue differentiation.

Journal ArticleDOI
TL;DR: In this paper, the basic principles of liquid-liquid phase separation are discussed in connection with several examples of VFs and a view which integrates viral replication mechanisms with the biochemistry underlying liquid-like organelles is proposed.
Abstract: Viruses have evolved precise mechanisms for using the cellular physiological pathways for their perpetuation. These virus-driven biochemical events must be separated in space and time from those of the host cell. In recent years, granular structures, known for over a century for rabies virus, were shown to host viral gene function and were named using terms such as viroplasms, replication sites, inclusion bodies, or viral factories (VFs). More recently, these VFs were shown to be liquid-like, sharing properties with membrane-less organelles driven by liquid-liquid phase separation (LLPS) in a process widely referred to as biomolecular condensation. Some of the best described examples of these structures come from negative stranded RNA viruses, where micrometer size VFs are formed toward the end of the infectious cycle. We here discuss some basic principles of LLPS in connection with several examples of VFs and propose a view, which integrates viral replication mechanisms with the biochemistry underlying liquid-like organelles. In this view, viral protein and RNA components gradually accumulate up to a critical point during infection where phase separation is triggered. This yields an increase in transcription that leads in turn to increased translation and a consequent growth of initially formed condensates. According to chemical principles behind phase separation, an increase in the concentration of components increases the size of the condensate. A positive feedback cycle would thus generate in which crucial components, in particular nucleoproteins and viral polymerases, reach their highest levels required for genome replication. Progress in understanding viral biomolecular condensation leads to exploration of novel therapeutics. Furthermore, it provides insights into the fundamentals of phase separation in the regulation of cellular gene function given that virus replication and transcription, in particular those requiring host polymerases, are governed by the same biochemical principles.

Journal ArticleDOI
TL;DR: In this paper, the most common O- and N-glycan structures present on plant glycoproteins as well as the plant glycosyltransferases (GTs) and glycoly hydrolases (GHs) responsible for their biosynthesis are presented.
Abstract: Glycosylation is a fundamental co-translational and/or post-translational modification process where an attachment of sugars onto either proteins or lipids can alter their biological function, subcellular location and modulate the development and physiology of an organism. Glycosylation is not a template driven process and as such produces a vastly larger array of glycan structures through combinatorial use of enzymes and of repeated common scaffolds and as a consequence it provides a huge expansion of both the proteome and lipidome. While the essential role of N- and O-glycan modifications on mammalian glycoproteins is already well documented, we are just starting to decode their biological functions in plants. Although significant advances have been made in plant glycobiology in the last decades, there are still key challenges impeding progress in the field and, as such, holistic modern high throughput approaches may help to address these conceptual gaps. In this snapshot, we present an update of the most common O- and N-glycan structures present on plant glycoproteins as well as (1) the plant glycosyltransferases (GTs) and glycosyl hydrolases (GHs) responsible for their biosynthesis; (2) a summary of microorganism-derived GHs characterized to cleave specific glycosidic linkages; (3) a summary of the available tools ranging from monoclonal antibodies (mAbs), lectins to chemical probes for the detection of specific sugar moieties within these complex macromolecules; (4) selected examples of N- and O-glycoproteins as well as in their related GTs to illustrate the complexity on their mode of action in plant cell growth and stress responses processes, and finally (5) we present the carbohydrate microarray approach that could revolutionize the way in which unknown plant GTs and GHs are identified and their specificities characterized.

Journal ArticleDOI
TL;DR: The molecular evolution of several human metalloproteins charged with restricting bacterial access to transition metals are reviewed, and how rapid antibiotic-mediated evolution of a zinc metalloenzyme obligatorily occurs in the context of host-imposed nutritional immunity is illustrated.

Journal ArticleDOI
TL;DR: In this article, the authors describe the genetic changes that occur during Acinetobacter baumannii infiltration into CSF and display A. baumannonii's expansive versatility to persist in a nutrient limited environment while enhancing several virulence factors to survive and persist.
Abstract: In a recent report by the Centers for Disease Control and Prevention (CDC), multidrug resistant (MDR) Acinetobacter baumannii is a pathogen described as an "urgent threat." Infection with this bacterium manifests as different diseases such as community and nosocomial pneumonia, bloodstream infections, endocarditis, infections of the urinary tract, wound infections, burn infections, skin and soft tissue infections, and meningitis. In particular, nosocomial meningitis, an unwelcome complication of neurosurgery caused by extensively-drug resistant (XDR) A. baumannii, is extremely challenging to manage. Therefore, understanding how A. baumannii adapts to different host environments, such as cerebrospinal fluid (CSF) that may trigger changes in expression of virulence factors that are associated with the successful establishment and progress of this infection is necessary. The present in-vitro work describes, the genetic changes that occur during A. baumannii infiltration into CSF and displays A. baumannii's expansive versatility to persist in a nutrient limited environment while enhancing several virulence factors to survive and persist. While a hypervirulent A. baumannii strain did not show changes in its transcriptome when incubated in the presence of CSF, a low-virulence isolate showed significant differences in gene expression and phenotypic traits. Exposure to 4% CSF caused increased expression of virulence factors such as fimbriae, pilins, and iron chelators, and other virulence determinants that was confirmed in various model systems. Furthermore, although CSF's presence did not enhance bacterial growth, an increase of expression of genes encoding transcription, translation, and the ATP synthesis machinery was observed. This work also explores A. baumannii's response to an essential component, human serum albumin (HSA), within CSF to trigger the differential expression of genes associated with its pathoadaptibility in this environment.

Journal ArticleDOI
TL;DR: Mancini et al. as discussed by the authors proposed a framework for the regulation of bioquimicas based on the Centro de Regulacion Genomica (CGRG) and the Consejo Nacional de Investigaciones Cientificas y Tecnicas.
Abstract: Fil: Mancini, Estefania. Centro de Regulacion Genomica; Espana. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires. Fundacion Instituto Leloir. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina

Journal ArticleDOI
19 Jun 2021-Cancers
TL;DR: In this paper, the authors discuss the possible fates of cells containing structural CIN, focusing on how a few cell duplication cycles suffice to induce profound CIN-mediated genome alterations, and discuss currently proposed strategies to either avoid or enhance CIN to a level that is no longer compatible with cell survival.
Abstract: Chromosomal instability (CIN) refers to an increased rate of acquisition of numerical and structural changes in chromosomes and is considered an enabling characteristic of tumors. Given its role as a facilitator of genomic changes, CIN is increasingly being considered as a possible therapeutic target, raising the question of which variables may convert CIN into an ally instead of an enemy during cancer treatment. This review discusses the origins of structural chromosome abnormalities and the cellular mechanisms that prevent and resolve them, as well as how different CIN phenotypes relate to each other. We discuss the possible fates of cells containing structural CIN, focusing on how a few cell duplication cycles suffice to induce profound CIN-mediated genome alterations. Because such alterations can promote tumor adaptation to treatment, we discuss currently proposed strategies to either avoid CIN or enhance CIN to a level that is no longer compatible with cell survival.

Posted ContentDOI
28 Oct 2021-bioRxiv
TL;DR: This paper used a curated collection of apo-holo conformations to evaluate the performance of AlphaFold2 in predicting protein 3D models and found that it was unable to reproduce observed conformational diversity with an equivalent error than in the estimation of a single conformation.
Abstract: After the outstanding breakthrough of AlphaFold in predicting protein 3D models, new questions appeared and remain unanswered. The ensemble nature of proteins, for example, challenges the structural prediction methods because the models should represent a set of conformers instead of single structures. The evolutionary and structural features captured by effective deep learning techniques may unveil the information to generate several diverse conformations from a single sequence. Here we address the performance of AlphaFold2 predictions under this ensemble paradigm. Using a curated collection of apo-holo conformations, we found that AlphaFold2 predicts the holo form of a protein in 70% of the cases, being unable to reproduce the observed conformational diversity with an equivalent error than in the estimation of a single conformation. More importantly, we found that AlphaFold29s performance worsens with the increasing conformational diversity of the studied protein. This impairment is related to the heterogeneity in the degree of conformational diversity found between different members of the homologous family of the protein under study. Finally, we found that main-chain flexibility associated with apo-holo pairs of conformers negatively correlates with the predicted local model quality score plDDT, indicating that plDDT values in a single 3D model could be used to infer local conformational changes linked to ligand binding transitions.

Journal ArticleDOI
TL;DR: Structural and kinetic analyses of the thiol-based transcriptional repressor SqrR in multiple states indicate that its persulfide selectivity is determined by structural frustration in the disulfide form, favoring formation of the tetrasulfide-bridged product.
Abstract: Cysteine thiol-based transcriptional regulators orchestrate the coordinated regulation of redox homeostasis and other cellular processes by 'sensing' or detecting a specific redox-active molecule, which in turn activates the transcription of a specific detoxification pathway. The extent to which these sensors are truly specific in cells for a singular class of reactive small-molecule stressors, for example, reactive oxygen or sulfur species, is largely unknown. Here, we report structural and mechanistic insights into the thiol-based transcriptional repressor SqrR, which reacts exclusively with oxidized sulfur species such as persulfides, to yield a tetrasulfide bridge that inhibits DNA operator-promoter binding. Evaluation of crystallographic structures of SqrR in various derivatized states, coupled with the results of a mass spectrometry-based kinetic profiling strategy, suggest that persulfide selectivity is determined by structural frustration of the disulfide form. These findings led to the identification of an uncharacterized repressor from the bacterial pathogen Acinetobacter baumannii as a persulfide sensor.

Journal ArticleDOI
TL;DR: In this article, the authors integrate and analyze the information across these databases, complement their records, and produce a consolidated set of proteins that enables the investigation of the liquid-liquid phase separation process (LLPS).
Abstract: In recent years, attention has been devoted to proteins forming immiscible liquid phases within the liquid intracellular medium, commonly referred to as membraneless organelles (MLO). These organelles enable the spatiotemporal associations of cellular components that exchange dynamically with the cellular milieu. The dysregulation of these liquid-liquid phase separation processes (LLPS) may cause various diseases including neurodegenerative pathologies and cancer, among others. Until very recently, databases containing information on proteins forming MLOs, as well as tools and resources facilitating their analysis, were missing. This has recently changed with the publication of 4 databases that focus on different types of experiments, sets of proteins, inclusion criteria, and levels of annotation or curation. In this study we integrate and analyze the information across these databases, complement their records, and produce a consolidated set of proteins that enables the investigation of the LLPS phenomenon. To gain insight into the features that characterize different types of MLOs and the roles of their associated proteins, they were grouped into categories: High Confidence MLO associated (including Drivers and reviewed proteins), Potential Clients and Regulators, according to their annotated functions. We show that none of the databases taken alone covers the data sufficiently to enable meaningful analysis, validating our integration effort as essential for gaining better understanding of phase separation and laying the foundations for the discovery of new proteins potentially involved in this important cellular process. Lastly, we developed a server, enabling customized selections of different sets of proteins based on MLO location, database, disorder content, among other attributes (https://forti.shinyapps.io/mlos/).

Journal ArticleDOI
TL;DR: In this article, an intricate regulatory network involving the APOLO/WRKY42 hub in the control of master and effector genes during root hair (RH) development was uncovered.
Abstract: Plant long noncoding RNAs (lncRNAs) are key chromatin dynamics regulators, directing the transcriptional programs driving a wide variety of developmental outputs. Recently, we uncovered how the lncRNA AUXIN REGULATED PROMOTER LOOP (APOLO) directly recognizes the locus encoding the root hair (RH) master regulator ROOT HAIR DEFECTIVE 6 (RHD6) modulating its transcriptional activation and leading to low temperature-induced RH elongation. We further demonstrated that APOLO interacts with the transcription factor WRKY42 in a novel ribonucleoprotein complex shaping RHD6 epigenetic environment and integrating signals governing RH growth and development. In this work, we expand this model showing that APOLO is able to bind and positively control the expression of several cell wall EXTENSIN (EXT) encoding genes, including EXT3, a key regulator for RH growth. Interestingly, EXT3 emerged as a novel common target of APOLO and WRKY42. Furthermore, we showed that the ROS homeostasis-related gene NADPH OXIDASE C (NOXC) is deregulated upon APOLO overexpression, likely through the RHD6-RSL4 pathway, and that NOXC is required for low temperature-dependent enhancement of RH growth. Collectively, our results uncover an intricate regulatory network involving the APOLO/WRKY42 hub in the control of master and effector genes during RH development.

Journal ArticleDOI
TL;DR: In this paper, the authors summarize recent discoveries in the plant TOR signaling pathway in the context of our current knowledge of mammalian and yeast cells, and highlight the most important gaps in our understanding of plants that need to be addressed in the future.
Abstract: Target of Rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in coordinating cell growth with light availability, the diurnal cycle, energy availability, and hormonal pathways. TOR Complex 1 (TORC1) controls cell proliferation, growth, metabolism, and defense in plants. Sugar availability is the main signal for activation of TOR in plants, as it also is in mammals and yeast. Specific regulators of the TOR kinase pathway in plants are inorganic compounds in the form of major nutrients in the soils, and light inputs via their impact on autotrophic metabolism. The lack of TOR is embryo-lethal in plants, whilst dysregulation of TOR signaling causes major alterations in growth and development. TOR exerts control as a regulator of protein translation via the action of proteins such as S6K, RPS6, and TAP46. Phytohormones are central players in the downstream systemic physiological TOR effects. TOR has recently been attributed to have roles in the control of DNA methylation, in the abundance of mRNA splicing variants, and in the variety of regulatory lncRNAs and miRNAs. In this review, we summarize recent discoveries in the plant TOR signaling pathway in the context of our current knowledge of mammalian and yeast cells, and highlight the most important gaps in our understanding of plants that need to be addressed in the future.

Journal ArticleDOI
TL;DR: It is found that parasite starvation promotes thecruzipain delivery to reservosomes and cruzipain activation and self-processing promote T. cruzi differentiation and host cell infection.
Abstract: Cruzipain, the major cysteine protease of the pathogenic protozoa Trypanosoma cruzi, is an important virulence factor that plays a key role in the parasite nutrition, differentiation and host cell infection. Cruzipain is synthesized as a zymogen, matured, and delivered to reservosomes. These organelles that store proteins and lipids ingested by endocytosis undergo a dramatic decrease in number during the metacyclogenesis of T. cruzi. Autophagy is a process that digests the own cell components to supply energy under starvation or different stress situations. This pathway is important during cell growth, differentiation and death. Previously, we showed that the autophagy pathway of T. cruzi is induced during metacyclogenesis. This work aimed to evaluate the participation of macroautophagy/autophagy in the distribution and function of reservosomes and cruzipain during this process. We found that parasite starvation promotes the cruzipain delivery to reservosomes. Enhanced autophagy increases acidity and hydrolytic activity in these compartments resulting in cruzipain enzymatic activation and self- processing. Inhibition of autophagy similarly impairs cruzipain traffic and activity than protease inhibitors, whereas mutant parasites that exhibit increased basal autophagy, also display increased cruzipain processing under control conditions. Further experiments showed that autophagy induced cruzipain activation and self-processing promote T. cruzi differentiation and host cell infection. These findings highlight the key role of T. cruzi autophagy in these processes and reveal a potential new target for Chagas disease therapy.Abbreviations: Baf: bafilomycin A1; CTE: C-terminal extension; Cz: cruzipain; IIF: indirect immunofluorescence; K777: vinyl sulfone with specific Cz inhibitory activity; Prot Inh: broad-spectrum protease inhibitor; Spa1: spautin-1; Wort: wortmannin.

Journal ArticleDOI
TL;DR: The impact of human pleural fluid (HPF) and human serum albumin (HSA) on the gene expression profile of a highly multi-drug resistant strain of A. baumannii AB5075 is explored.
Abstract: Acinetobacter baumannii is a nosocomial pathogen capable of causing serious infections associated with high rates of morbidity and mortality. Due to its antimicrobial drug resistance profile, A. baumannii is categorized as an urgent priority pathogen by the Centers for Disease Control and Prevention in the United States and a priority group 1 critical microorganism by the World Health Organization. Understanding how A. baumannii adapts to different host environments may provide critical insights into strategically targeting this pathogen with novel antimicrobial and biological therapeutics. Exposure to human fluids was previously shown to alter the gene expression profile of a highly drug-susceptible A. baumannii strain A118 leading to persistence and survival of this pathogen. Herein, we explore the impact of human pleural fluid (HPF) and human serum albumin (HSA) on the gene expression profile of a highly multi-drug-resistant strain of A. baumannii AB5075. Differential expression was observed for ~30 genes, whose products are involved in quorum sensing, quorum quenching, iron acquisition, fatty acid metabolism, biofilm formation, secretion systems, and type IV pilus formation. Phenotypic and further transcriptomic analysis using quantitative RT-PCR confirmed RNA-seq data and demonstrated a distinctive role of HSA as the molecule involved in A. baumannii’s response.

Journal ArticleDOI
TL;DR: It is shown that SAS restricts leaf blade size through two distinct cellular strategies, early SAS induction limits cell division, while later exposure limits cell expansion, which enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth.
Abstract: Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.

Journal ArticleDOI
TL;DR: In this paper, a review highlights the importance of an integrative approach of glioma histopathological features, single-cell and spatially resolved transcriptomic and cellular dynamics to understand tumor heterogeneity and maximize therapeutic effects.
Abstract: Glioblastomas (GBM) are the most common and aggressive tumors of the central nervous system. Rapid tumor growth and diffuse infiltration into healthy brain tissue, along with high intratumoral heterogeneity, challenge therapeutic efficacy and prognosis. A better understanding of spatiotemporal tumor heterogeneity at the histological, cellular, molecular, and dynamic levels would accelerate the development of novel treatments for this devastating brain cancer. Histologically, GBM is characterized by nuclear atypia, cellular pleomorphism, necrosis, microvascular proliferation, and pseudopalisades. At the cellular level, the glioma microenvironment comprises a heterogeneous landscape of cell populations, including tumor cells, non-transformed/reactive glial and neural cells, immune cells, mesenchymal cells, and stem cells, which support tumor growth and invasion through complex network crosstalk. Genomic and transcriptomic analyses of gliomas have revealed significant inter and intratumoral heterogeneity and insights into their molecular pathogenesis. Moreover, recent evidence suggests that diverse dynamics of collective motion patterns exist in glioma tumors, which correlate with histological features. We hypothesize that glioma heterogeneity is not stochastic, but rather arises from organized and dynamic attributes, which favor glioma malignancy and influences treatment regimens. This review highlights the importance of an integrative approach of glioma histopathological features, single-cell and spatially resolved transcriptomic and cellular dynamics to understand tumor heterogeneity and maximize therapeutic effects.

Journal ArticleDOI
05 Mar 2021-ACS Nano
TL;DR: In this paper, the authors describe a polymer therapeutic for the delivery of DMHCA, which is an LXR partial agonist that, despite inducing the expression of apolipoprotein E (main responsible of Aβ drainage from the brain) shows nil activity in vivo because of a low solubility and inability to cross the blood brain barrier.
Abstract: The progressive accumulation of amyloid-beta (Aβ) in specific areas of the brain is a common prelude to late-onset of Alzheimer's disease (AD). Although activation of liver X receptors (LXR) with agonists decreases Aβ levels and ameliorates contextual memory deficit, concomitant hypercholesterolemia/hypertriglyceridemia limits their clinical application. DMHCA (N,N-dimethyl-3β-hydroxycholenamide) is an LXR partial agonist that, despite inducing the expression of apolipoprotein E (main responsible of Aβ drainage from the brain) without increasing cholesterol/triglyceride levels, shows nil activity in vivo because of a low solubility and inability to cross the blood brain barrier. Herein, we describe a polymer therapeutic for the delivery of DMHCA. The covalent incorporation of DMHCA into a PEG-dendritic scaffold via carboxylate esters produces an amphiphilic copolymer that efficiently self-assembles into nanometric micelles that exert a biological effect in primary cultures of the central nervous system (CNS) and experimental animals using the intranasal route. After CNS biodistribution and effective doses of DMHCA micelles were determined in nontransgenic mice, a transgenic AD-like mouse model of cerebral amyloidosis was treated with the micelles for 21 days. The benefits of the treatment included prevention of memory deterioration and a significant reduction of hippocampal Aβ oligomers without affecting plasma lipid levels. These results represent a proof of principle for further clinical developments of DMHCA delivery systems.