scispace - formally typeset
Search or ask a question
Institution

Fundación Instituto Leloir

FacilityBuenos Aires, Argentina
About: Fundación Instituto Leloir is a facility organization based out in Buenos Aires, Argentina. It is known for research contribution in the topics: Dentate gyrus & Neurogenesis. The organization has 702 authors who have published 1052 publications receiving 39299 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This study identifies for the first time the relevant metallothionein isoforms for colorectal cancer progression, supports the concept that their loss is associated with worse prognosis, and suggests 2 mechanisms for epigenetic repression of metallothsionein expression in coloreCTal tumors.

51 citations

Journal ArticleDOI
TL;DR: It is concluded that this novel immunogen represents a promising candidate for vaccine or Ab development with preventive or therapeutic ends, for use in hemolytic uremic syndrome–endemic areas or during future outbreaks caused by pathogenic strains of Stx-producing E. coli.
Abstract: The striking feature of enterohemorrhagic Escherichia coli (EHEC) infections is the production of Shiga toxins (Stx) implicated in the development of the life-threatening hemolytic uremic syndrome. Despite the magnitude of the social impact of EHEC infections, no licensed vaccine or effective therapy is available for human use. One of the biggest challenges is to develop an effective and safe immunogen to ensure nontoxicity, as well as a strong input to the immune system to induce long-lasting, high-affinity Abs with anti-Stx-neutralizing capacity. The enzyme lumazine synthase from Brucella spp. (BLS) is a highly stable dimer of pentamers and a scaffold with enormous plasticity on which to display foreign Ags. Taking into account the advantages of BLS and the potential capacity of the B subunit of Stx2 to induce Abs that prevent Stx2 toxicity by blocking its entrance into the host cells, we engineered a new immunogen by inserting the B subunit of Stx2 at the amino termini of BLS. The resulting chimera demonstrated a strong capacity to induce a long-lasting humoral immune response in mice. The chimera induced Abs with high neutralizing capacity for Stx2 and its variants. Moreover, immunized mice were completely protected against i.v. Stx2 challenge, and weaned mice receiving an oral challenge with EHEC were completely protected by the transference of immune sera. We conclude that this novel immunogen represents a promising candidate for vaccine or Ab development with preventive or therapeutic ends, for use in hemolytic uremic syndrome-endemic areas or during future outbreaks caused by pathogenic strains of Stx-producing E. coli.

51 citations

Journal ArticleDOI
TL;DR: S-foci, the first reported mRNA-silencing foci specific to neurons, may control local mRNA translation in response to NMDA receptor stimulation and synaptic plasticity.
Abstract: Mammalian Smaug1/Samd4A is a translational repressor. Here we show that Smaug1 forms mRNA-silencing foci located at postsynapses of hippocampal neurons. These structures, which we have named S-foci, are distinct from P-bodies, stress granules, or other neuronal RNA granules hitherto described, and are the first described mRNA-silencing foci specific to neurons. RNA binding was not required for aggregation, which indicates that S-foci formation is not a consequence of mRNA silencing. N-methyl-d-aspartic acid (NMDA) receptor stimulation provoked a rapid and reversible disassembly of S-foci, transiently releasing transcripts (the CaMKIIα mRNA among others) to allow their translation. Simultaneously, NMDA triggered global translational silencing, which suggests the specific activation of Smaug1-repressed transcripts. Smaug1 is expressed during synaptogenesis, and Smaug1 knockdown affected the number and size of synapses, and also provoked an impaired response to repetitive depolarizing stimuli, as indicated by a reduced induction of Arc/Arg3.1. Our results suggest that S-foci control local translation, specifically responding to NMDA receptor stimulation and affecting synaptic plasticity.

51 citations

Journal ArticleDOI
TL;DR: A switch in the regulatory activity of RVE8–LNK interaction is defined, from a synergic coactivating role of evening-expressed clock genes to a repressive antagonistic function modulating anthocyanin biosynthesis around midday.
Abstract: Circadian clocks sustain 24-h rhythms in physiology and metabolism that are synchronized with the day/night cycle. In plants, the regulatory network responsible for the generation of rhythms has been broadly investigated over the past years. However, little is known about the intersecting pathways that link the environmental signals with rhythms in cellular metabolism. Here, we examine the role of the circadian components REVEILLE8/LHY-CCA1-LIKE5 (RVE8/LCL5) and NIGHT LIGHT–INDUCIBLE AND CLOCK-REGULATED genes (LNK) shaping the diurnal oscillation of the anthocyanin metabolic pathway. Around dawn, RVE8 up-regulates anthocyanin gene expression by directly associating to the promoters of a subset of anthocyanin biosynthetic genes. The up-regulation is overcome at midday by the repressing activity of LNK proteins, as inferred by the increased anthocyanin gene expression in lnk1/lnk2 double mutant plants. Chromatin immunoprecipitation assays using LNK and RVE8 misexpressing plants show that RVE8 binding to target promoters is precluded in LNK overexpressing plants and conversely, binding is enhanced in the absence of functional LNKs, which provides a mechanism by which LNKs antagonize RVE8 function in the regulation of anthocyanin accumulation. Based on their previously described transcriptional coactivating function, our study defines a switch in the regulatory activity of RVE8–LNK interaction, from a synergic coactivating role of evening-expressed clock genes to a repressive antagonistic function modulating anthocyanin biosynthesis around midday.

51 citations

Journal ArticleDOI
08 Jan 2019-Mbio
TL;DR: A model in which a functional diversification of duplicated RNA elements in the viral 3′ untranslated region (UTR) is driven by host-specific requirements is supported, and a pseudoknot formed within DB2 competes with long-range RNA-RNA interactions that are necessary for minus-strand RNA synthesis.
Abstract: Flaviviruses include a diverse group of medically important viruses that cycle between mosquitoes and humans. During this natural process of switching hosts, each species imposes different selective forces on the viral population. Using dengue virus (DENV) as model, we found that paralogous RNA structures originating from duplications in the viral 3' untranslated region (UTR) are under different selective pressures in the two hosts. These RNA structures, known as dumbbells (DB1 and DB2), were originally proposed to be enhancers of viral replication. Analysis of viruses obtained from infected mosquitoes showed selection of mutations that mapped in DB2. Recombinant viruses carrying the identified variations confirmed that these mutations greatly increase viral replication in mosquito cells, with low or no impact in human cells. Use of viruses lacking each of the DB structures revealed opposite viral phenotypes. While deletion of DB1 reduced viral replication about 10-fold, viruses lacking DB2 displayed a great increase of fitness in mosquitoes, confirming a functional diversification of these similar RNA elements. Mechanistic analysis indicated that DB1 and DB2 differentially modulate viral genome cyclization and RNA replication. We found that a pseudoknot formed within DB2 competes with long-range RNA-RNA interactions that are necessary for minus-strand RNA synthesis. Our results support a model in which a functional diversification of duplicated RNA elements in the viral 3' UTR is driven by host-specific requirements. This study provides new ideas for understanding molecular aspects of the evolution of RNA viruses that naturally jump between different species.IMPORTANCE Flaviviruses constitute the most relevant group of arthropod-transmitted viruses, including important human pathogens such as the dengue, Zika, yellow fever, and West Nile viruses. The natural alternation of these viruses between vertebrate and invertebrate hosts shapes the viral genome population, which leads to selection of different viral variants with potential implications for epidemiological fitness and pathogenesis. However, the selective forces and mechanisms acting on the viral RNA during host adaptation are still largely unknown. Here, we found that two almost identical tandem RNA structures present at the viral 3' untranslated region are under different selective pressures in the two hosts. Mechanistic studies indicated that the two RNA elements, known as dumbbells, contain sequences that overlap essential RNA cyclization elements involved in viral RNA synthesis. The data support a model in which the duplicated RNA structures differentially evolved to accommodate distinct functions for viral replication in the two hosts.

51 citations


Authors

Showing all 707 results

Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

91% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

91% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

91% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

91% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202210
2021107
202099
201986
201865
201781