scispace - formally typeset
Search or ask a question
Institution

Fundación Instituto Leloir

FacilityBuenos Aires, Argentina
About: Fundación Instituto Leloir is a facility organization based out in Buenos Aires, Argentina. It is known for research contribution in the topics: Dentate gyrus & Neurogenesis. The organization has 702 authors who have published 1052 publications receiving 39299 citations.


Papers
More filters
Journal ArticleDOI
12 Nov 2009-Vaccine
TL;DR: Results strongly support the usefulness of the chimera rBLSOmp31 as a vaccine against Brucella ovis in ovine brucellosis by inducing the highest IgG specific antibodies with bacteriolytic activity.

47 citations

Journal ArticleDOI
TL;DR: The results support the notion that optimal substrate degradation by IDE may require its association with organized-DRMs, and the concept that mis-location of Aβ degrading proteases away from DRMs may impair the physiological turn-over of A β in vivo deserves further investigation.
Abstract: Insulin degrading enzyme (IDE) is implicated in the regulation of amyloid β (Aβ) steady-state levels in the brain, and its deficient expression and/or activity may be a risk factor in sporadic Alzheimer's disease (AD). Although IDE sub-cellular localization has been well studied, the compartments relevant to Aβ degradation remain to be determined. Our results of live immunofluorescence, immuno gold electron-microscopy and gradient fractionation concurred to the demonstration that endogenous IDE from brain tissues and cell cultures is, in addition to its other localizations, a detergent-resistant membrane (DRM)-associated metallopeptidase. Our pulse chase experiments were in accordance with the existence of two pools of IDE: the cytosolic one with a longer half-life and the membrane-IDE with a faster turn-over. DRMs-associated IDE co-localized with Aβ and its distribution (DRMs vs. non-DRMs) and activity was sensitive to manipulation of lipid composition in vitro and in vivo. When IDE was mis-located from DRMs by treating cells with methyl-β-cyclodextrin (MβCD), endogenous Aβ accumulated in the extracellular space and exogenous Aβ proteolysis was impaired. We detected a reduced amount of IDE in DRMs of membranes isolated from mice brain with endogenous reduced levels of cholesterol (Chol) due to targeted deletion of one seladin-1 allele. We confirmed that a moderate shift of IDE from DRMs induced a substantial decrement on IDE-mediated insulin and Aβ degradation in vitro. Our results support the notion that optimal substrate degradation by IDE may require its association with organized-DRMs. Alternatively, DRMs but not other plasma membrane regions, may act as platforms where Aβ accumulates, due to its hydrophobic properties, reaching local concentration close to its Km for IDE facilitating its clearance. Structural integrity of DRMs may also be required to tightly retain insulin receptor and IDE for insulin proteolysis. The concept that mis-location of Aβ degrading proteases away from DRMs may impair the physiological turn-over of Aβ in vivo deserves further investigation in light of therapeutic strategies based on enhancing Aβ proteolysis in which DRM protease-targeting may need to be taken into account.

47 citations

Journal ArticleDOI
TL;DR: Results indicate that pre-existing astrocytes remodel their processes to ensheathe synapses of adult-born neurons and participate to the functional and structural integration of these cells into the hippocampal network.
Abstract: The adult dentate gyrus produces new neurons that morphologically and functionally integrate into the hippocampal network. In the adult brain, most excitatory synapses are ensheathed by astrocytic perisynaptic processes that regulate synaptic structure and function. However, these processes are formed during embryonic or early postnatal development and it is unknown whether astrocytes can also ensheathe synapses of neurons born during adulthood and, if so, whether they play a role in their synaptic transmission. Here, we used a combination of serial-section immuno-electron microscopy, confocal microscopy, and electrophysiology to examine the formation of perisynaptic processes on adult-born neurons. We found that the afferent and efferent synapses of newborn neurons are ensheathed by astrocytic processes, irrespective of the age of the neurons or the size of their synapses. The quantification of gliogenesis and the distribution of astrocytic processes on synapses formed by adult-born neurons suggest that the majority of these processes are recruited from pre-existing astrocytes. Furthermore, the inhibition of astrocytic glutamate re-uptake significantly reduced postsynaptic currents and increased paired-pulse facilitation in adult-born neurons, suggesting that perisynaptic processes modulate synaptic transmission on these cells. Finally, some processes were found intercalated between newly formed dendritic spines and potential presynaptic partners, suggesting that they may also play a structural role in the connectivity of new spines. Together, these results indicate that pre-existing astrocytes remodel their processes to ensheathe synapses of adult-born neurons and participate to the functional and structural integration of these cells into the hippocampal network.

47 citations

Journal ArticleDOI
TL;DR: It is suggested that NK cells are the effectors present in PBMC since they were able to induce ADCC at lower effector:target ratios, and could advantageously replace IL-2 in most of its immunologic activities.
Abstract: Triple negative breast cancer (TNBC) patients are not likely to benefit from anti-estrogen or anti-HER2 therapy and this phenotype is associated with a more aggressive clinical course and worse clinical outcome. Taking into account the limited treatment possibilities in TNBC, the aim of the present work was to study a potential therapy based on Cetuximab-mediated immune activity by natural killer (NK) cells. We performed in vitro studies on human breast cancer (BC) cell lines, IIB-BR-G, and the in vivo metastatic variant IIB-BR-G MT. The immunohistochemical analysis showed a TNBC phenotype with high but different levels of EGFR expression on each cell line, measured by flow cytometry. DNA sequencing showed that both cell lines have a mutated K-RAS status, 38 G > A at codon 13. Consequently, Cetuximab did not inhibit cellular proliferation or induce apoptosis. We investigated if Cetuximab could trigger immune mechanisms, and we determined that both cell lines treated with 1 μg/ml Cetuximab were susceptible to antibody dependent cellular cytotoxicity (ADCC), mediated by peripheral blood mononuclear cells (PBMC). At 50:1 effector:target ratio, lytic activity was 34 ± 2% against IIB-BR-G and 27 ± 6% against IIB-BR-G MT cells. PBMC pretreatment with IL-2 allowed reaching 65 ± 3% of Cetuximab-mediated ADCC against IIB-BR-G and 63 ± 6.5% against IIB-BR-G MT. Furthermore, IL-15 pretreatment increased the ADCC up to 71 ± 3% in IIB-BR-G and 79 ± 3.5% in IIB-BR-G MT. We suggest that NK cells are the effectors present in PBMC since they were able to induce ADCC at lower effector:target ratios. Besides, IL-2- and mainly IL-15-induced upregulation of NK activating receptors CD16 and NKG2D and enhanced IFN-γ production. EGFR-expressing TNBC could be killed by Cetuximab-mediated ADCC at clinically achievable concentrations. IL-15 could advantageously replace IL-2 in most of its immunologic activities, stimulating the ability to produce IFN-γ, and paralleling the up-regulation of activating receptors.

47 citations

Journal ArticleDOI
TL;DR: The effect of a red‐light pulse on AS of a gene encoding a splicing factor was not impaired in a quintuple phytochrome mutant, providing unequivocal evidence that nonphotosensory photoreceptors control AS in light‐grown plants.
Abstract: Light modulates plant growth and development to a great extent by regulating gene expression programs. Here, we evaluated the effect of light on alternative splicing (AS) in light-grown Arabidopsis thaliana plants using high-throughput RNA sequencing (RNA-seq). We found that an acute light pulse given in the middle of the night, a treatment that simulates photoperiod lengthening, affected AS events corresponding to 382 genes. Some of these AS events were associated with genes involved in primary metabolism and stress responses, which may help to adjust metabolic and physiological responses to seasonal changes. We also found that several core clock genes showed changes in AS in response to the light treatment, suggesting that light regulation of AS may play a role in clock entrainment. Finally, we found that many light-regulated AS events were associated with genes encoding RNA processing proteins and splicing factors, supporting the idea that light regulates this posttranscriptional regulatory layer through AS regulation of splicing factors. Interestingly, the effect of a red-light pulse on AS of a gene encoding a splicing factor was not impaired in a quintuple phytochrome mutant, providing unequivocal evidence that nonphotosensory photoreceptors control AS in light-grown plants.

47 citations


Authors

Showing all 707 results

Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

91% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

91% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

91% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

91% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202210
2021107
202099
201986
201865
201781