scispace - formally typeset
Search or ask a question
Institution

Fundación Instituto Leloir

FacilityBuenos Aires, Argentina
About: Fundación Instituto Leloir is a facility organization based out in Buenos Aires, Argentina. It is known for research contribution in the topics: Dentate gyrus & Neurogenesis. The organization has 702 authors who have published 1052 publications receiving 39299 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The existing data on the inflammatory component of MS is reviewed, with special attention on the effect of peripheral infections in the etiology and progression of MS and its effect on the relapsing and remitting episodes and the effects of peripheral inflammatory events in MS experimental animal models are analyzed.

37 citations

Journal ArticleDOI
TL;DR: A general systems-level mechanism, pre-equilibrium sensing and signaling (PRESS), which overcomes this saturation limit by shifting and expanding the input dynamic range to which cells can respond to ligand concentrations so high as to be otherwise indistinguishable.
Abstract: Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general “systems level” mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step.

37 citations

Journal ArticleDOI
TL;DR: The identification of many circadian regulated splicing events broadens the current understanding of the level of control that the circadian clock has over this co/posttranscriptional regulatory layer.
Abstract: The circadian clock of Arabidopsis thaliana controls many physiological and molecular processes, allowing plants to anticipate daily changes in their environment. However, developing a detailed understanding of how oscillations in mRNA levels are connected to oscillations in co/post-transcriptional processes, such as splicing, has remained a challenge. Here we applied a combined approach using deep transcriptome sequencing and bioinformatics tools to identify novel circadian-regulated genes and splicing events. Using a stringent approach, we identified 300 intron retention, eight exon skipping, 79 alternative 3' splice site usage, 48 alternative 5' splice site usage, and 350 multiple (more than one event type) annotated events under circadian regulation. We also found seven and 721 novel alternative exonic and intronic events. Depletion of the circadian-regulated splicing factor AtSPF30 homologue resulted in the disruption of a subset of clock-controlled splicing events. Altogether, our global circadian RNA-seq coupled with an in silico, event-centred, splicing analysis tool offers a new approach for studying the interplay between the circadian clock and the splicing machinery at a global scale. The identification of many circadian-regulated splicing events broadens our current understanding of the level of control that the circadian clock has over this co/post-transcriptional regulatory layer.

37 citations

Journal ArticleDOI
TL;DR: A green tea aqueous extract was prepared and blended at different percentages (2, 4 and 8%) with a commercial fish-skin gelatin in order to provide gelatin films with antioxidant capacity.
Abstract: A green tea aqueous extract was prepared and blended at different percentages (2, 4 and 8%) with a commercial fish-skin gelatin in order to provide gelatin films with antioxidant capacity. This green tea extract proved to be an efficient antioxidant at non-cytotoxic concentrations. Gelatin films with green tea extract were subjected to enzymatic digestion with pepsin (gastric digestion) and with pepsin, trypsin and chymotrypsin (gastrointestinal digestion). The gelatin matrix was efficiently hydrolysed during gastrointestinal digestion and protein hydrolysates composed of low molecular weight peptides, regardless the content of green tea extract, were obtained in all the formulations. High percentages of total polyphenols were recovered from the films with green tea extract after gastrointestinal digestion, although a significant degradation of the major catechins of the green tea (EGCG and EGC) was observed. The increase of the content of green tea extract in the film formulation gave an increase in the antioxidant activity released from the film samples after enzymatic digestion. 85–100% of the maximum expected antioxidant activity was recovered after both gastric and gastrointestinal digestion in spite of the degradation observed of EGCG and EGC.

37 citations

Journal ArticleDOI
TL;DR: It is shown that growth under very- SD (3 h) or darkness (on sucrose) also accelerates flowering on a biological scale, indicating that SD actively repress flowering compared with very-SD.
Abstract: Long days (LD) promote flowering of Arabidopsis thaliana compared with short days (SD) by activating the photoperiodic pathway. Here we show that growth under very-SD (3 h) or darkness (on sucrose) also accelerates flowering on a biological scale, indicating that SD actively repress flowering compared with very-SD. CONSTANS (CO) repressed flowering under SD, and the early flowering of co under SD required FLOWERING LOCUS T (FT). FT was expressed at a basal level in the leaves under SD, but these levels were not enhanced in co. This indicates that the action of CO in A. thaliana is not the mirror image of the action of its homologue in rice. In the apex, CO enhanced the expression of TERMINAL FLOWER 1 (TFL1) around the time when FT expression is important to promote flowering. Under SD, the tfl1 mutation was epistatic to co and in turn ft was epistatic to tfl1. These observations are consistent with the long-standing but not demonstrated model where CO can inhibit FT induction of flowering by affecting TFL1 expression.

37 citations


Authors

Showing all 707 results

Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

91% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

91% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

91% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

91% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202210
2021107
202099
201986
201865
201781