scispace - formally typeset
Search or ask a question
Institution

Fundación Instituto Leloir

FacilityBuenos Aires, Argentina
About: Fundación Instituto Leloir is a facility organization based out in Buenos Aires, Argentina. It is known for research contribution in the topics: Dentate gyrus & Neurogenesis. The organization has 702 authors who have published 1052 publications receiving 39299 citations.
Topics: Dentate gyrus, Neurogenesis, RNA, Arabidopsis, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that the upregulation of SPARC previously reported for aHSCs partially mediates profibrogenic activities of TGF-β(1) and PDGF-BB and identify SPARC as a potential therapeutic target for liver fibrosis.
Abstract: Liver fibrosis is an active process that involves changes in cell-cell and cell-extracellular matrix (ECM) interaction. Secreted protein, acidic and rich in cysteine (SPARC) is an ECM protein with many biological functions that is overexpressed in cirrhotic livers and upregulated in activated hepatic stellate cells (aHSCs). We have recently shown that SPARC downregulation ameliorates liver fibrosis in vivo. To uncover the cellular mechanisms involved, we have specifically knocked down SPARC in two aHSC lines [the CFSC-2G (rat) and the LX-2 (human)] and in primary cultured rat aHSCs. Transient downregulation of SPARC in hepatic stellate cells (HSCs) did not affect their proliferation and had only minor effects on apoptosis. However, SPARC knockdown increased HSC adhesion to fibronectin and significantly decreased their migration toward PDFG-BB and TGF-β1. Interestingly, TGF-β1 secretion by HSCs was reduced following SPARC small interfering RNA (siRNA) treatment, and preincubation with TGF-β1 restored the migratory capacity of SPARC siRNA-treated cells through mechanisms partially independent from TGF-β1-mediated induction of SPARC expression; thus SPARC knockdown seems to exert its effects on HSCs partially through modulation of TGF-β1 expression levels. Importantly, collagen-I mRNA expression was reduced in SPARC siRNA-transfected HSCs. Consistent with previous results, SPARC knockdown in aHSCs was associated with altered F-actin expression patterns and deregulation of key ECM and cell adhesion molecules, i.e., downregulation of N-cadherin and upregulation of E-cadherin. Our data together suggest that the upregulation of SPARC previously reported for aHSCs partially mediates profibrogenic activities of TGF-β1 and PDGF-BB and identify SPARC as a potential therapeutic target for liver fibrosis.

36 citations

Journal ArticleDOI
TL;DR: The findings suggest that the structural constraints underlying protein dynamism, essential for protein function, could modulate protein divergence.
Abstract: Native state of proteins is better represented by an ensemble of conformers in equilibrium than by only one structure. The extension of structural differences between conformers characterizes the conformational diversity of the protein. In this study, we found a negative correlation between conformational diversity and protein evolutionary rate. Conformational diversity was expressed as the maximum root mean square deviation (RMSD) between the available conformers in Conformational Diversity of Native State database. Evolutionary rate estimations were calculated using 16 different species compared with human sharing at least 700 orthologous proteins with known conformational diversity extension. The negative correlation found is independent of the protein expression level and comparable in magnitude and sign with the correlation between gene expression level and evolutionary rate. Our findings suggest that the structural constraints underlying protein dynamism, essential for protein function, could modulate protein divergence.

36 citations

Journal ArticleDOI
TL;DR: A computational study of the E2–DNA interaction in all 73 types within the alpha papillomavirus genus, including all known mucosal types, indicates that E2 proteins have similar DNA discrimination properties.
Abstract: Mucosal human papillomaviruses (HPVs) are etiological agents of oral, anal and genital cancer. Properties of high- and low-risk HPV types cannot be reduced to discrete molecular traits. The E2 protein regulates viral replication and transcription through a finely tuned interaction with four sites at the upstream regulatory region of the genome. A computational study of the E2–DNA interaction in all 73 types within the alpha papillomavirus genus, including all known mucosal types, indicates that E2 proteins have similar DNA discrimination properties. Differences in E2–DNA interaction among HPV types lie mostly in the target DNA sequence, as opposed to the amino acid sequence of the conserved DNA-binding alpha helix of E2. Sequence logos of natural and in vitro selected sites show an asymmetric pattern of conservation arising from indirect readout, and reveal evolutionary pressure for a putative methylation site. Based on DNA sequences only, we could predict differences in binding energies with a standard deviation of 0.64 kcal/mol. These energies cluster into six discrete affinity hierarchies and uncovered a fifth E2-binding site in the genome of six HPV types. Finally, certain distances between sites, affinity hierarchies and their eventual changes upon methylation, are statistically associated with high-risk types.

36 citations

Journal ArticleDOI
12 Aug 2015-PLOS ONE
TL;DR: The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis.
Abstract: Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis.

36 citations

Journal ArticleDOI
TL;DR: Several of the effects of canopy shade-light signals appear to be negative for yield and pose the question of whether breeding and selection have optimised the magnitude of these responses in crops.
Abstract: Crop management decisions such as sowing density, row distance and orientation, choice of cultivar, and weed control define the architecture of the canopy, which in turn affects the light environment experienced by crop plants. Phytochromes, cryptochromes, phototropins, and the UV-B photoreceptor UVR8 are sensory photoreceptors able to perceive specific light signals that provide information about the dynamic status of canopy architecture. These signals include the low irradiance (indicating that not all the effects of irradiance occur via photosynthesis) and low red/far-red ratio typical of dense stands. The simulation of selected signals of canopy shade light and/or the analysis of photoreceptor mutants have revealed that canopy light signals exert significant influence on plant performance. The main effects of the photoreceptors include the control of (a) the number and position of the leaves and their consequent capacity to intercept light, via changes in stem height, leaf orientation, and branching; (b) the photosynthetic capacity of green tissues, via stomatic and nonstomatic actions; (c) the investment of captured resources into harvestable organs; and (d) the plant defences against herbivores and pathogens. Several of the effects of canopy shade-light signals appear to be negative for yield and pose the question of whether breeding and selection have optimised the magnitude of these responses in crops.

36 citations


Authors

Showing all 707 results

Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

91% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

91% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

91% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

91% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202210
2021107
202099
201986
201865
201781