scispace - formally typeset
Search or ask a question
Institution

General Electric

CompanyBoston, Massachusetts, United States
About: General Electric is a company organization based out in Boston, Massachusetts, United States. It is known for research contribution in the topics: Turbine & Rotor (electric). The organization has 76365 authors who have published 110557 publications receiving 1885108 citations. The organization is also known as: General Electric Company & GE.
Topics: Turbine, Rotor (electric), Signal, Combustor, Coating


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the decomposition of crystalline magnesium borohydride upon heating was studied using thermal desorption, calorimetry, in situ X-ray diffraction, and solid state NMR.

208 citations

Journal ArticleDOI
25 Sep 2006
TL;DR: This paper begins with a discussion of the thermophysics of phase-change processes and a description of the available dielectric liquid cooling techniques and their history, and describes the phenomenology of pool boiling, spray/jet impingements, gas-assisted evaporation, and synthetic jet impingement with dielectrics liquids.
Abstract: The inexorable rise in chip power dissipation and emergence of on-chip hot spots with heat fluxes approaching 1 =kW/cm2 has turned renewed attention to direct cooling with dielectric liquids. Use of dielectric liquids in intimate contact with the heat dissipating surfaces eliminates the deleterious effects of solid-solid interface resistances and harnesses the highly efficient phase-change processes to the critical thermal management of advanced IC chips. In the interest of defining the state-of-the-art in direct liquid cooling, this paper begins with a discussion of the thermophysics of phase-change processes and a description of the available dielectric liquid cooling techniques and their history. It then describes the phenomenology of pool boiling, spray/jet impingement, gas-assisted evaporation, and synthetic jet impingement with dielectric liquids. Available correlations for predicting the heat transfer coefficients and limiting heat transfer rates, as well as documented empirical results for these promising techniques for on-chip hot spot cooling, are also provided and compared

208 citations

Patent
23 Aug 1999
TL;DR: An apparatus and method of predicting vehicle breakdown and operability includes monitoring at a monitoring station on-board systems parameter data transmitted from a vehicle from a remote location, determining whether any of the monitored data is out of a predetermined range, calculating trends for monitored data determined to be out of range, identifying any system fault, and predicting what vehicle system(s) must be corrected to avoid vehicle failure and when such system(S) are likely to fail unless corrected as discussed by the authors.
Abstract: An apparatus and method of predicting vehicle breakdown and operability includes monitoring at a monitoring station on-board systems parameter data transmitted from a vehicle from a remote location; determining whether any of the monitored data is out of a predetermined range; calculating trends for monitored data determined to be out of range; identifying any system fault; and predicting what vehicle system(s) must be corrected to avoid vehicle failure and when such system(s) are likely to fail unless corrected.

208 citations

Journal ArticleDOI
TL;DR: It is concluded that the shortest scan time on third-generation units (0.6 second) cannot prevent all artifacts arising from motion in the chest, and even ultrafast scan times are not short enough to eliminate artifacts on these units.
Abstract: Cardiac and ventilatory motions cause artifacts at chest computed tomography (CT). To determine how short the scan times on third-generation units must be to avoid such artifacts, motion was measured with fast and ultrafast CT scans. Minimum detectable motion was then determined. The longest scan time that avoided a barely perceptible artifact was calculated by dividing the minimum detectable motion by the peak physiologic velocity. The posterior left ventricular wall moved at a maximum velocity of 52.5 mm/sec, necessitating a scan time of 19.1 msec or less to avoid artifact. Lung vessels near the heart moved at 40.5 mm/sec for a scan time of 24.7 msec or less. During quiet breathing, pulmonary vessels moved at 10.7 mm/sec for a scan time of 93.5 msec or less. The authors conclude that the shortest scan time on third-generation units (0.6 second) cannot prevent all artifacts arising from motion in the chest. Even ultrafast scan times (50 msec) are not short enough to eliminate artifacts on these units. Th...

208 citations

Journal ArticleDOI
TL;DR: Results indicate that short-term, potentially lethal, effects of ionizing radiation will limit high-resolution live animal imaging and dose considerations will become much more important for live small-animal imaging as the limits of resolution are tested.
Abstract: Small-animal imaging has become increasingly more important as transgenic and knockout mice are produced to model human diseases. One imaging technique that has emerged is microcomputed tomography (micro-CT). For live-animal imaging, the precision in the images will be determined by the x-ray dose given to the animal. As a result, we propose a simple method to predict the noise performance of an x-ray micro-CT system as a function of dose and image resolution. An ideal, quantum-noise limited micro-CT scanner, assumed to have perfect resolution and ideal efficiency, was modeled. Using a simplified model, the coefficient of variation (COV) of the linear attenuation coefficient was calculated for a range of entrance doses and isotropic voxel sizes. COV calculations were performed for the ideal case and with simulated imperfections in efficiency and resolution. Our model was validated in phantom studies and mouse images were acquired with a specimen scanner to illustrate the results. A simplified model of noise propagation in the case of isotropic resolution indicates that the COV in the linear attenuation coefficient is proportional to (dose)(-1/2) and to the (isotropic voxel size)(-2) in the reconstructed volume. Therefore an improvement in the precision can be achieved only by increasing the isotropic voxel size (thereby decreasing the resolution of the image) or by increasing the x-ray dose. For the ideal scanner, a COV of 1% in the linear attenuation coefficient for an image of a mouse exposed to 0.25 Gy is obtained with a minimum isotropic voxel size of 135 microm. However, the same COV is achieved at a dose of 5.0 Gy with a 65 microm isotropic voxel size. Conversely, for a 68 mm diameter rat, a COV of 1% obtained from an image at 5.0 Gy would require an isotropic voxel size of 100 microm. These results indicate that short-term, potentially lethal, effects of ionizing radiation will limit high-resolution live animal imaging. As improvements in detector technology allow the resolution to improve, by decreasing the detector element size to tens of microns or less, high quality images will be limited by the x-ray dose administered. For the highest quality images, these doses will approach the lethal dose or LD50 for the animals. Approaching the lethal dose will affect the way experiments are planned, and may reduce opportunities for experiments involving imaging the same animal over time. Dose considerations will become much more important for live small-animal imaging as the limits of resolution are tested.

208 citations


Authors

Showing all 76370 results

NameH-indexPapersCitations
Cornelia M. van Duijn1831030146009
Krzysztof Matyjaszewski1691431128585
Gary H. Glover12948677009
Mark E. Thompson12852777399
Ron Kikinis12668463398
James E. Rothman12535860655
Bo Wang119290584863
Wei Lu111197361911
Harold J. Vinegar10837930430
Peng Wang108167254529
Hans-Joachim Freund10696246693
Carl R. Woese10527256448
William J. Koros10455038676
Thomas A. Lipo10368243110
Gene H. Golub10034257361
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

86% related

Bell Labs
59.8K papers, 3.1M citations

86% related

Georgia Institute of Technology
119K papers, 4.6M citations

86% related

Argonne National Laboratory
64.3K papers, 2.4M citations

85% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202216
2021415
20201,027
20191,418
20181,862