scispace - formally typeset
Search or ask a question
Institution

General Electric

CompanyBoston, Massachusetts, United States
About: General Electric is a company organization based out in Boston, Massachusetts, United States. It is known for research contribution in the topics: Turbine & Signal. The organization has 76365 authors who have published 110557 publications receiving 1885108 citations. The organization is also known as: General Electric Company & GE.
Topics: Turbine, Signal, Rotor (electric), Coating, Combustor


Papers
More filters
Proceedings ArticleDOI
17 Jun 2006
TL;DR: A novel spatiotemporal segmentation algorithm is employed to generate salient edgels that are robust to changes in appearance of clothing and invariant signatures are generated by combining normalized color and salient edgel histograms.
Abstract: In many surveillance applications it is desirable to determine if a given individual has been previously observed over a network of cameras. This is the person reidentification problem. This paper focuses on reidentification algorithms that use the overall appearance of an individual as opposed to passive biometrics such as face and gait. Person reidentification approaches have two aspects: (i) establish correspondence between parts, and (ii) generate signatures that are invariant to variations in illumination, pose, and the dynamic appearance of clothing. A novel spatiotemporal segmentation algorithm is employed to generate salient edgels that are robust to changes in appearance of clothing. The invariant signatures are generated by combining normalized color and salient edgel histograms. Two approaches are proposed to generate correspondences: (i) a model based approach that fits an articulated model to each individual to establish a correspondence map, and (ii) an interest point operator approach that nominates a large number of potential correspondences which are evaluated using a region growing scheme. Finally, the approaches are evaluated on a 44 person database across 3 disparate views.

597 citations

Journal ArticleDOI
TL;DR: The results suggest MxIF should be broadly applicable to problems in the fields of basic biological research, drug discovery and development, and clinical diagnostics.
Abstract: Limitations on the number of unique protein and DNA molecules that can be characterized microscopically in a single tissue specimen impede advances in understanding the biological basis of health and disease. Here we present a multiplexed fluorescence microscopy method (MxIF) for quantitative, single-cell, and subcellular characterization of multiple analytes in formalin-fixed paraffin-embedded tissue. Chemical inactivation of fluorescent dyes after each image acquisition round allows reuse of common dyes in iterative staining and imaging cycles. The mild inactivation chemistry is compatible with total and phosphoprotein detection, as well as DNA FISH. Accurate computational registration of sequential images is achieved by aligning nuclear counterstain-derived fiducial points. Individual cells, plasma membrane, cytoplasm, nucleus, tumor, and stromal regions are segmented to achieve cellular and subcellular quantification of multiplexed targets. In a comparison of pathologist scoring of diaminobenzidine staining of serial sections and automated MxIF scoring of a single section, human epidermal growth factor receptor 2, estrogen receptor, p53, and androgen receptor staining by diaminobenzidine and MxIF methods yielded similar results. Single-cell staining patterns of 61 protein antigens by MxIF in 747 colorectal cancer subjects reveals extensive tumor heterogeneity, and cluster analysis of divergent signaling through ERK1/2, S6 kinase 1, and 4E binding protein 1 provides insights into the spatial organization of mechanistic target of rapamycin and MAPK signal transduction. Our results suggest MxIF should be broadly applicable to problems in the fields of basic biological research, drug discovery and development, and clinical diagnostics.

594 citations

Journal ArticleDOI
01 Jan 1996-Carbon
TL;DR: In recent years, important advances in the understanding of the pressure-temperature phase and transformation diagram for carbon have occurred as a result of developments in both experimental and theoretical techniques as discussed by the authors.

580 citations

Journal ArticleDOI
Wayne Nelson1
TL;DR: Applications of the hazard plotting method are given for multiply censored data on service life of equipment, for strength data on an item with different failure modes, and for biological data multiply censored on both sides from paired comparisons.
Abstract: This paper presents theory and applications of a simple graphical method, called hazard plotting, for the analysis of multiply censored life data consisting of failure times of failed units intermixed with running times on unfailed units. Applications of the method are given for multiply censored data on service life of equipment, for strength data on an item with different failure modes, and for biological data multiply censored on both sides from paired comparisons. Theory for the hazard plotting method, which is based on the hazard function of a distribution, is developed from the properties of order statistics from Type II multiply censored samples.

578 citations

Journal ArticleDOI
TL;DR: A clear relationship between the hysteresis and the middle eigenvalue of the transformation stretch tensor as predicted by the theory was observed for the first time and a new composition region of titanium-rich SMAs is identified with potential for improved control of SMA properties.
Abstract: Reversibility of structural phase transformations has profound technological implications in a wide range of applications from fatigue life in shape-memory alloys (SMAs) to magnetism in multiferroic oxides. The geometric nonlinear theory of martensite universally applicable to all structural transitions has been developed. It predicts the reversibility of the transitions as manifested in the hysteresis behaviour based solely on crystal symmetry and geometric compatibilities between phases. In this article, we report on the verification of the theory using the high-throughput approach. The thin-film composition-spread technique was devised to rapidly map the lattice parameters and the thermal hysteresis of ternary alloy systems. A clear relationship between the hysteresis and the middle eigenvalue of the transformation stretch tensor as predicted by the theory was observed for the first time. We have also identified a new composition region of titanium-rich SMAs with potential for improved control of SMA properties.

577 citations


Authors

Showing all 76370 results

NameH-indexPapersCitations
Cornelia M. van Duijn1831030146009
Krzysztof Matyjaszewski1691431128585
Gary H. Glover12948677009
Mark E. Thompson12852777399
Ron Kikinis12668463398
James E. Rothman12535860655
Bo Wang119290584863
Wei Lu111197361911
Harold J. Vinegar10837930430
Peng Wang108167254529
Hans-Joachim Freund10696246693
Carl R. Woese10527256448
William J. Koros10455038676
Thomas A. Lipo10368243110
Gene H. Golub10034257361
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

86% related

Bell Labs
59.8K papers, 3.1M citations

86% related

Georgia Institute of Technology
119K papers, 4.6M citations

86% related

Argonne National Laboratory
64.3K papers, 2.4M citations

85% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202216
2021415
20201,027
20191,418
20181,862