scispace - formally typeset
Search or ask a question
Institution

Georgia Institute of Technology

EducationAtlanta, Georgia, United States
About: Georgia Institute of Technology is a education organization based out in Atlanta, Georgia, United States. It is known for research contribution in the topics: Population & Computer science. The organization has 45387 authors who have published 119086 publications receiving 4651220 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, instead of selecting factors by stepwise backward elimination, the authors focus on the accuracy of estimation and consider extensions of the lasso, the LARS algorithm and the non-negative garrotte for factor selection.
Abstract: Summary. We consider the problem of selecting grouped variables (factors) for accurate prediction in regression. Such a problem arises naturally in many practical situations with the multifactor analysis-of-variance problem as the most important and well-known example. Instead of selecting factors by stepwise backward elimination, we focus on the accuracy of estimation and consider extensions of the lasso, the LARS algorithm and the non-negative garrotte for factor selection. The lasso, the LARS algorithm and the non-negative garrotte are recently proposed regression methods that can be used to select individual variables. We study and propose efficient algorithms for the extensions of these methods for factor selection and show that these extensions give superior performance to the traditional stepwise backward elimination method in factor selection problems. We study the similarities and the differences between these methods. Simulations and real examples are used to illustrate the methods.

7,400 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

7,327 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
14 Apr 2006-Science
TL;DR: This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
Abstract: We have converted nanoscale mechanical energy into electrical energy by means of piezoelectric zinc oxide nanowire (NW) arrays. The aligned NWs are deflected with a conductive atomic force microscope tip in contact mode. The coupling of piezoelectric and semiconducting properties in zinc oxide creates a strain field and charge separation across the NW as a result of its bending. The rectifying characteristic of the Schottky barrier formed between the metal tip and the NW leads to electrical current generation. The efficiency of the NW-based piezoelectric power generator is estimated to be 17 to 30%. This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.

6,692 citations

Journal ArticleDOI
TL;DR: The novel functionalities and current research challenges of the xG networks are explained in detail, and a brief overview of the cognitive radio technology is provided and the xg network architecture is introduced.

6,608 citations


Authors

Showing all 45752 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Younan Xia216943175757
Paul M. Thompson1832271146736
Hyun-Chul Kim1764076183227
Jiawei Han1681233143427
John H. Seinfeld165921114911
David J. Mooney15669594172
Richard E. Smalley153494111117
Vivek Sharma1503030136228
James M. Tiedje150688102287
Philip S. Yu1481914107374
Kevin Murphy146728120475
Gordon T. Richards144613110666
Yi Yang143245692268
Joseph T. Hupp14173182647
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

96% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

University of Maryland, College Park
155.9K papers, 7.2M citations

95% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Purdue University
163.5K papers, 5.7M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023163
2022704
20216,327
20206,636
20196,645
20186,011