scispace - formally typeset
Search or ask a question
Institution

German Red Cross

HealthcareBerlin, Germany
About: German Red Cross is a healthcare organization based out in Berlin, Germany. It is known for research contribution in the topics: Transplantation & Mesenchymal stem cell. The organization has 653 authors who have published 1146 publications receiving 40111 citations. The organization is also known as: Deutsches Rotes Kreuz & DRK.


Papers
More filters
Journal ArticleDOI
Jean Bousquet, N. Khaltaev, Alvaro A. Cruz1, Judah A. Denburg2, W. J. Fokkens3, Alkis Togias4, T. Zuberbier5, Carlos E. Baena-Cagnani6, Giorgio Walter Canonica7, C. van Weel8, Ioana Agache9, Nadia Aït-Khaled, Claus Bachert10, Michael S. Blaiss11, Sergio Bonini12, L.-P. Boulet13, Philippe-Jean Bousquet, Paulo Augusto Moreira Camargos14, K-H. Carlsen15, Y. Z. Chen, Adnan Custovic16, Ronald Dahl17, Pascal Demoly, H. Douagui, Stephen R. Durham18, R. Gerth van Wijk19, O. Kalayci19, Michael A. Kaliner20, You Young Kim21, Marek L. Kowalski, Piotr Kuna22, L. T. T. Le23, Catherine Lemière24, Jing Li25, Richard F. Lockey26, S. Mavale-Manuel26, Eli O. Meltzer27, Y. Mohammad28, J Mullol, Robert M. Naclerio29, Robyn E O'Hehir30, K. Ohta31, S. Ouedraogo31, S. Palkonen, Nikolaos G. Papadopoulos32, Gianni Passalacqua7, Ruby Pawankar33, Todor A. Popov34, Klaus F. Rabe35, J Rosado-Pinto36, G. K. Scadding37, F. E. R. Simons38, Elina Toskala39, E. Valovirta40, P. Van Cauwenberge10, De Yun Wang41, Magnus Wickman42, Barbara P. Yawn43, Arzu Yorgancioglu44, Osman M. Yusuf, H. J. Zar45, Isabella Annesi-Maesano46, E.D. Bateman45, A. Ben Kheder47, Daniel A. Boakye48, J. Bouchard, Peter Burney18, William W. Busse49, Moira Chan-Yeung50, Niels H. Chavannes35, A.G. Chuchalin, William K. Dolen51, R. Emuzyte52, Lawrence Grouse53, Marc Humbert, C. M. Jackson54, Sebastian L. Johnston18, Paul K. Keith2, James P. Kemp27, J. M. Klossek55, Désirée Larenas-Linnemann55, Brian J. Lipworth54, Jean-Luc Malo24, Gailen D. Marshall56, Charles K. Naspitz57, K. Nekam, Bodo Niggemann58, Ewa Nizankowska-Mogilnicka59, Yoshitaka Okamoto60, M. P. Orru61, Paul Potter45, David Price62, Stuart W. Stoloff63, Olivier Vandenplas, Giovanni Viegi, Dennis M. Williams64 
Federal University of Bahia1, McMaster University2, University of Amsterdam3, National Institutes of Health4, Charité5, Catholic University of Cordoba6, University of Genoa7, Radboud University Nijmegen8, Transilvania University of Brașov9, Ghent University10, University of Tennessee Health Science Center11, University of Naples Federico II12, Laval University13, Universidade Federal de Minas Gerais14, University of Oslo15, University of Manchester16, Aarhus University17, Imperial College London18, Erasmus University Rotterdam19, George Washington University20, Seoul National University21, Medical University of Łódź22, Hai phong University Of Medicine and Pharmacy23, Université de Montréal24, Guangzhou Medical University25, University of South Florida26, University of California, San Diego27, University of California28, University of Chicago29, Monash University30, Teikyo University31, National and Kapodistrian University of Athens32, Nippon Medical School33, Sofia Medical University34, Leiden University35, Leiden University Medical Center36, University College London37, University of Manitoba38, University of Helsinki39, Finnish Institute of Occupational Health40, National University of Singapore41, Karolinska Institutet42, University of Minnesota43, Celal Bayar University44, University of Cape Town45, Pierre-and-Marie-Curie University46, Tunis University47, University of Ghana48, University of Wisconsin-Madison49, University of British Columbia50, Georgia Regents University51, Vilnius University52, University of Washington53, University of Dundee54, University of Poitiers55, University of Mississippi56, Federal University of São Paulo57, German Red Cross58, Jagiellonian University Medical College59, Chiba University60, American Pharmacists Association61, University of Aberdeen62, University of Nevada, Reno63, University of North Carolina at Chapel Hill64
01 Apr 2008-Allergy
TL;DR: The ARIA guidelines for the management of allergic rhinitis and asthma are similar in both the 1999 ARIA workshop report and the 2008 Update as discussed by the authors, but the GRADE approach is not yet available.
Abstract: Allergic rhinitis is a symptomatic disorder of the nose induced after allergen exposure by an IgE-mediated inflammation of the membranes lining the nose. It is a global health problem that causes major illness and disability worldwide. Over 600 million patients from all countries, all ethnic groups and of all ages suffer from allergic rhinitis. It affects social life, sleep, school and work and its economic impact is substantial. Risk factors for allergic rhinitis are well identified. Indoor and outdoor allergens as well as occupational agents cause rhinitis and other allergic diseases. The role of indoor and outdoor pollution is probably very important, but has yet to be fully understood both for the occurrence of the disease and its manifestations. In 1999, during the Allergic Rhinitis and its Impact on Asthma (ARIA) WHO workshop, the expert panel proposed a new classification for allergic rhinitis which was subdivided into 'intermittent' or 'persistent' disease. This classification is now validated. The diagnosis of allergic rhinitis is often quite easy, but in some cases it may cause problems and many patients are still under-diagnosed, often because they do not perceive the symptoms of rhinitis as a disease impairing their social life, school and work. The management of allergic rhinitis is well established and the ARIA expert panel based its recommendations on evidence using an extensive review of the literature available up to December 1999. The statements of evidence for the development of these guidelines followed WHO rules and were based on those of Shekelle et al. A large number of papers have been published since 2000 and are extensively reviewed in the 2008 Update using the same evidence-based system. Recommendations for the management of allergic rhinitis are similar in both the ARIA workshop report and the 2008 Update. In the future, the GRADE approach will be used, but is not yet available. Another important aspect of the ARIA guidelines was to consider co-morbidities. Both allergic rhinitis and asthma are systemic inflammatory conditions and often co-exist in the same patients. In the 2008 Update, these links have been confirmed. The ARIA document is not intended to be a standard-of-care document for individual countries. It is provided as a basis for physicians, health care professionals and organizations involved in the treatment of allergic rhinitis and asthma in various countries to facilitate the development of relevant local standard-of-care documents for patients.

3,769 citations

Journal ArticleDOI
TL;DR: Both UCB and AT are attractive alternatives to BM in isolating MSC: AT as it contains MSCs at the highest frequency and UCB as it seems to be expandable to higher numbers.
Abstract: Mesenchymal stem cells (MSCs) represent a promising tool for new clinical concepts in supporting cellular therapy. Bone marrow (BM) was the first source reported to contain MSCs. However, for clinical use, BM may be detrimental due to the highly invasive donation procedure and the decline in MSC number and differentiation potential with increasing age. More recently, umbilical cord blood (UCB), attainable by a less invasive method, was introduced as an alternative source for MSCs. Another promising source is adipose tissue (AT). We compared MSCs derived from these sources regarding morphology, the success rate of isolating MSCs, colony frequency, expansion potential, multiple differentiation capacity, and immune phenotype. No significant differences concerning the morphology and immune phenotype of the MSCs derived from these sources were obvious. Differences could be observed concerning the success rate of isolating MSCs, which was 100% for BM and AT, but only 63% for UCB. The colony frequency was lowest in UCB, whereas it was highest in AT. However, UCB-MSCs could be cultured longest and showed the highest proliferation capacity, whereas BM-MSCs possessed the shortest culture period and the lowest proliferation capacity. Most strikingly, UCB-MSCs showed no adipogenic differentiation capacity, in contrast to BM- and AT-MSCs. Both UCB and AT are attractive alternatives to BM in isolating MSC: AT as it contains MSCs at the highest frequency and UCB as it seems to be expandable to higher numbers.

3,057 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize recent developments and the current knowledge of extracellular vesicles (EVs) and discuss safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application.
Abstract: Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.

954 citations

Journal ArticleDOI
TL;DR: This work investigated whether cells with MSC characteristics and multi‐lineage differentiation potential can be cultivated from UCB of healthy newborns and whether yields might be maximized by optimal culture conditions or by defining UCB quality criteria.
Abstract: Evidence has emerged that mesenchymal stem cells (MSCs) represent a promising population for supporting new clinical concepts in cellular therapy. However, attempts to isolate MSCs from umbilical cord blood (UCB) of full-term deliveries have previously either failed or been characterized by a low yield. We investigated whether cells with MSC characteristics and multi-lineage differentiation potential can be cultivated from UCB of healthy newborns and whether yields might be maximized by optimal culture conditions or by defining UCB quality criteria. Using optimized isolation and culture conditions, in up to 63% of 59 low-volume UCB units, cells showing a characteristic mesenchymal morphology and immune phenotype (MSC-like cells) were isolated. These were similar to control MSCs from adult bone marrow (BM). The frequency of MSC-like cells ranged from 0 to 2.3 clones per 1 x 10(8) mononuclear cells (MNCs). The cell clones proliferated extensively with at least 20 population doublings within eight passages. In addition, osteogenic and chondrogenic differentiation demonstrated a multi-lineage capacity comparable with BM MSCs. However, in contrast to MSCs, MSC-like cells showed a reduced sensitivity to undergo adipogenic differentiation. Crucial points to isolate MSC-like cells from UCB were a time from collection to isolation of less than 15 hours, a net volume of more than 33 ml, and an MNC count of more than 1 x 10(8) MNCs. Because MSC-like cells can be isolated at high efficacy from full-term UCB donations, we regard UCB as an additional stem cell source for experimental and potentially clinical purposes.

936 citations

Journal ArticleDOI
29 Apr 2021-Cell
TL;DR: In this article, the authors show that SARS-CoV-2/COVID-19 variants B.1.7 (UK), B.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies.

754 citations


Authors

Showing all 658 results

NameH-indexPapersCitations
Johannes Oldenburg7258318790
Bodo Niggemann7127919475
Norbert Weissmann7138421187
Hubert Schrezenmeier6936016215
Triantafyllos Chavakis6524213247
Klaus Schwarz5820913407
Willy A. Flegel502336742
Rainer M. Bohle492356923
Torsten Tonn4815111328
Daniel Ricklin4614410713
Erhard Seifried442547967
Pamela S. Becker422576256
Karen Bieback4113510010
Halvard Bonig412164828
Julia Kzhyshkowska401265963
Network Information
Related Institutions (5)
Leiden University Medical Center
38K papers, 1.6M citations

83% related

Charité
64.5K papers, 2.4M citations

82% related

Karolinska University Hospital
33.5K papers, 1.2M citations

82% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

81% related

St. Jude Children's Research Hospital
19.2K papers, 1.2M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
20227
202198
2020126
201995
201891