Institution
Goa University
Education•Taleigao, India•
About: Goa University is a education organization based out in Taleigao, India. It is known for research contribution in the topics: Catalysis & Ferrite (magnet). The organization has 1110 authors who have published 2121 publications receiving 27309 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: The extent of the trait data compiled in TRY is evaluated and emerging patterns of data coverage and representativeness are analyzed to conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements.
Abstract: Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
882 citations
Mae Fah Luang University1, Martin Luther University of Halle-Wittenberg2, George Mason University3, University of Graz4, University of Trieste5, University of Chicago6, National Taiwan Ocean University7, University of Illinois at Urbana–Champaign8, Biotec9, Hirosaki University10, Beijing Forestry University11, Royal Botanic Gardens12, University of Malaya13, King Saud University14, Federal University of Pernambuco15, Goa University16, Natural History Museum17, Complutense University of Madrid18, Guizhou University19, University of California, Riverside20, Landcare Research21, Illinois Natural History Survey22, World Agroforestry Centre23, Kunming Institute of Botany24, Universidade Nova de Lisboa25, University of North Carolina at Greensboro26, Royal Botanic Garden Edinburgh27
TL;DR: Dothideomycetes comprise a highly diverse range of fungi characterized mainly by asci with two wall layers (bitunicate asci) and often with fissitunicate dehiscence, and it is hoped that by illustrating types they provide stimulation and interest so that more work is carried out in this remarkable group of fungi.
Abstract: Dothideomycetes comprise a highly diverse range of fungi characterized mainly by asci with two wall layers (bitunicate asci) and often with fissitunicate dehiscence. Many species are saprobes, with many asexual states comprising important plant pathogens. They are also endophytes, epiphytes, fungicolous, lichenized, or lichenicolous fungi. They occur in terrestrial, freshwater and marine habitats in almost every part of the world. We accept 105 families in Dothideomycetes with the new families Anteagloniaceae, Bambusicolaceae, Biatriosporaceae, Lichenoconiaceae, Muyocopronaceae, Paranectriellaceae, Roussoellaceae, Salsugineaceae, Seynesiopeltidaceae and Thyridariaceae introduced in this paper. Each family is provided with a description and notes, including asexual and asexual states, and if more than one genus is included, the type genus is also characterized. Each family is provided with at least one figure-plate, usually illustrating the type genus, a list of accepted genera, including asexual genera, and a key to these genera. A phylogenetic tree based on four gene combined analysis add support for 64 of the families and 22 orders, including the novel orders, Dyfrolomycetales, Lichenoconiales, Lichenotheliales, Monoblastiales, Natipusillales, Phaeotrichales and Strigulales. The paper is expected to provide a working document on Dothideomycetes which can be modified as new data comes to light. It is hoped that by illustrating types we provide stimulation and interest so that more work is carried out in this remarkable group of fungi.
501 citations
TL;DR: This paper is a compilation of notes on 142 fungal taxa, including five new families, 20 new genera, and 100 new species, representing a wide taxonomic and geographic range.
Abstract: Notes on 113 fungal taxa are compiled in this paper, including 11 new genera, 89 new species, one new subspecies, three new combinations and seven reference specimens. A wide geographic and taxonomic range of fungal taxa are detailed. In the Ascomycota the new genera Angustospora (Testudinaceae), Camporesia (Xylariaceae), Clematidis, Crassiparies (Pleosporales genera incertae sedis), Farasanispora, Longiostiolum (Pleosporales genera incertae sedis), Multilocularia (Parabambusicolaceae), Neophaeocryptopus (Dothideaceae), Parameliola (Pleosporales genera incertae sedis), and Towyspora (Lentitheciaceae) are introduced. Newly introduced species are Angustospora nilensis, Aniptodera aquibella, Annulohypoxylon albidiscum, Astrocystis thailandica, Camporesia sambuci, Clematidis italica, Colletotrichum menispermi, C. quinquefoliae, Comoclathris pimpinellae, Crassiparies quadrisporus, Cytospora salicicola, Diatrype thailandica, Dothiorella rhamni, Durotheca macrostroma, Farasanispora avicenniae, Halorosellinia rhizophorae, Humicola koreana, Hypoxylon lilloi, Kirschsteiniothelia tectonae, Lindgomyces okinawaensis, Longiostiolum tectonae, Lophiostoma pseudoarmatisporum, Moelleriella phukhiaoensis, M. pongdueatensis, Mucoharknessia anthoxanthi, Multilocularia bambusae, Multiseptospora thysanolaenae, Neophaeocryptopus cytisi, Ocellularia arachchigei, O. ratnapurensis, Ochronectria thailandica, Ophiocordyceps karstii, Parameliola acaciae, P. dimocarpi, Parastagonospora cumpignensis, Pseudodidymosphaeria phlei, Polyplosphaeria thailandica, Pseudolachnella brevifusiformis, Psiloglonium macrosporum, Rhabdodiscus albodenticulatus, Rosellinia chiangmaiensis, Saccothecium rubi, Seimatosporium pseudocornii, S. pseudorosae, Sigarispora ononidis and Towyspora aestuari. New combinations are provided for Eutiarosporella dactylidis (sexual morph described and illustrated) and Pseudocamarosporium pini. Descriptions, illustrations and / or reference specimens are designated for Aposphaeria corallinolutea, Cryptovalsa ampelina, Dothiorella vidmadera, Ophiocordyceps formosana, Petrakia echinata, Phragmoporthe conformis and Pseudocamarosporium pini. The new species of Basidiomycota are Agaricus coccyginus, A. luteofibrillosus, Amanita atrobrunnea, A. digitosa, A. gleocystidiosa, A. pyriformis, A. strobilipes, Bondarzewia tibetica, Cortinarius albosericeus, C. badioflavidus, C. dentigratus, C. duboisensis, C. fragrantissimus, C. roseobasilis, C. vinaceobrunneus, C. vinaceogrisescens, C. wahkiacus, Cyanoboletus hymenoglutinosus, Fomitiporia atlantica, F. subtilissima, Ganoderma wuzhishanensis, Inonotus shoreicola, Lactifluus armeniacus, L. ramipilosus, Leccinum indoaurantiacum, Musumecia alpina, M. sardoa, Russula amethystina subp. tengii and R. wangii are introduced. Descriptions, illustrations, notes and / or reference specimens are designated for Clarkeinda trachodes, Dentocorticium ussuricum, Galzinia longibasidia, Lentinus stuppeus and Leptocorticium tenellum. The other new genera, species new combinations are Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis from Neocallimastigomycota, Phytophthora estuarina, P. rhizophorae, Salispina, S. intermedia, S. lobata and S. spinosa from Oomycota, and Absidia stercoraria, Gongronella orasabula, Mortierella calciphila, Mucor caatinguensis, M. koreanus, M. merdicola and Rhizopus koreanus in Zygomycota.
488 citations
Mae Fah Luang University1, World Agroforestry Centre2, King Saud University3, Guizhou University4, Goa University5, Centre national de la recherche scientifique6, Chinese Academy of Sciences7, Beijing Forestry University8, Botanic Garden Meise9, Indonesian Institute of Sciences10, University of Mauritius11, Thailand National Science and Technology Development Agency12, Landcare Research13, University of Toronto14, Iranian Research Organization for Science and Technology15, University of Gothenburg16, National Taiwan Ocean University17, Universidade Federal de Viçosa18, Universidade Nova de Lisboa19, Lincoln Memorial University20, Facultad de Ciencias Exactas y Naturales21, Ahi Evran University22, University of Arkansas23, Royal Botanic Garden Edinburgh24, University of British Columbia25, University of Turin26, Sohag University27, Flinders University28, Chiang Mai University29
TL;DR: The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups.
Abstract: Taxonomic names are key links between various databases that store information on different organisms. Several global fungal nomenclural and taxonomic databases (notably Index Fungorum, Species Fungorum and MycoBank) can be sourced to find taxonomic details about fungi, while DNA sequence data can be sourced from NCBI, EBI and UNITE databases. Although the sequence data may be linked to a name, the quality of the metadata is variable and generally there is no corresponding link to images, descriptions or herbarium material. There is generally no way to establish the accuracy of the names in these genomic databases, other than whether the submission is from a reputable source. To tackle this problem, a new database (FacesofFungi), accessible at www.facesoffungi.org
(FoF) has been established. This fungal database allows deposition of taxonomic data, phenotypic details and other useful data, which will enhance our current taxonomic understanding and ultimately enable mycologists to gain better and updated insights into the current fungal classification system. In addition, the database will also allow access to comprehensive metadata including descriptions of voucher and type specimens. This database is user-friendly, providing links and easy access between taxonomic ranks, with the classification system based primarily on molecular data (from the literature and via updated web-based phylogenetic trees), and to a lesser extent on morphological data when molecular data are unavailable. In FoF species are not only linked to the closest phylogenetic representatives, but also relevant data is provided, wherever available, on various applied aspects, such as ecological, industrial, quarantine and chemical uses. The data include the three main fungal groups (Ascomycota, Basidiomycota, Basal fungi) and fungus-like organisms. The FoF webpage is an output funded by the Mushroom Research Foundation which is an NGO with seven directors with mycological expertise. The webpage has 76 curators, and with the help of these specialists, FoF will provide an updated natural classification of the fungi, with illustrated accounts of species linked to molecular data. The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups. The structure and use of the database is then explained. We would like to invite all mycologists to contribute to these web pages.
458 citations
TL;DR: In this paper, the expression of the soybean ferritin gene under the control of the glutelin promoter in rice has proven to be effective in enhancing grain nutritional levels, not only in brown grains but also in polished grains.
Abstract: In this report, we show that the expression of the soybean ferritin gene, driven by the endosperm-specific glutelin promoter, leads to higher iron and zinc levels in transgenic indica rice grains. Brown rice is rarely consumed, and polishing of the rice grain brings considerable loss of micronutrients by removing its outer layers. No data until now have shown that after commercial milling the micronutrient concentration remains higher than that of the control. In our experiment, expression of the soybean ferritin gene under the control of the glutelin promoter in rice has proven to be effective in enhancing grain nutritional levels, not only in brown grains but also in polished grains. Besides determining the iron levels in transgenic rice grains, we also checked for zinc concentration, and it was found to be higher in transgenic seeds than in the control. Moreover, we introduced this gene in an elite indica rice line that has highly desirable agronomic and field-performance traits. Prussian blue staining reaction clearly revealed the presence of iron in the endosperm cells of transgenic rice grains, and immunolocalization revealed the presence of the expression gene in the endosperm of the transgenic material. # 2002 Elsevier Science Ireland Ltd. All rights reserved.
387 citations
Authors
Showing all 1136 results
Name | H-index | Papers | Citations |
---|---|---|---|
Dong Ki Lee | 47 | 301 | 7769 |
José C. Menezes | 37 | 156 | 3737 |
Sheshanath V. Bhosale | 36 | 196 | 5444 |
Rahul Pandit | 32 | 190 | 4584 |
Debasis Sengupta | 31 | 72 | 4639 |
Aurélie Bessière | 27 | 48 | 3098 |
Prabhakar Palni | 26 | 59 | 1780 |
Fedor I. Zubkov | 23 | 246 | 1850 |
Venkatesha R. Hathwar | 22 | 106 | 1490 |
D. Jayarama Bhat | 22 | 66 | 2699 |
Santosh Kumar Dubey | 22 | 71 | 1566 |
Santosh G. Tilve | 22 | 155 | 1920 |
K. R. Priolkar | 21 | 34 | 2433 |
Babu P. George | 21 | 141 | 1584 |
K.C. Patil | 21 | 67 | 1303 |