scispace - formally typeset
Search or ask a question

Showing papers by "Goddard Space Flight Center published in 2008"


Journal ArticleDOI
TL;DR: The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission.
Abstract: The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission by the Naval Research Laboratory (USA), the Lockheed Solar and Astrophysics Laboratory (USA), the Goddard Space Flight Center (USA), the University of Birmingham (UK), the Rutherford Appleton Laboratory (UK), the Max Planck Institute for Solar System Research (Germany), the Centre Spatiale de Leige (Belgium), the Institut d’Optique (France) and the Institut d’Astrophysique Spatiale (France). SECCHI comprises five telescopes, which together image the solar corona from the solar disk to beyond 1 AU. These telescopes are: an extreme ultraviolet imager (EUVI: 1–1.7 R⊙), two traditional Lyot coronagraphs (COR1: 1.5–4 R⊙ and COR2: 2.5–15 R⊙) and two new designs of heliospheric imagers (HI-1: 15–84 R⊙ and HI-2: 66–318 R⊙). All the instruments use 2048×2048 pixel CCD arrays in a backside-in mode. The EUVI backside surface has been specially processed for EUV sensitivity, while the others have an anti-reflection coating applied. A multi-tasking operating system, running on a PowerPC CPU, receives commands from the spacecraft, controls the instrument operations, acquires the images and compresses them for downlink through the main science channel (at compression factors typically up to 20×) and also through a low bandwidth channel to be used for space weather forecasting (at compression factors up to 200×). An image compression factor of about 10× enable the collection of images at the rate of about one every 2–3 minutes. Identical instruments, except for different sizes of occulters, are included on the STEREO-A and STEREO-B spacecraft.

1,781 citations


Journal ArticleDOI
TL;DR: For example, the extent and area of the Arctic sea ice reached minima on 14 September 2007 at 4.1 × 106 km2 and 3.6 × 106 cm2, respectively as discussed by the authors.
Abstract: [1] Satellite data reveal unusually low Arctic sea ice coverage during the summer of 2007, caused in part by anomalously high temperatures and southerly winds. The extent and area of the ice cover reached minima on 14 September 2007 at 4.1 × 106 km2 and 3.6 × 106 km2, respectively. These are 24% and 27% lower than the previous record lows, both reached on 21 September 2005, and 37% and 38% less than the climatological averages. Acceleration in the decline is evident as the extent and area trends of the entire ice cover (seasonal and perennial ice) have shifted from about −2.2 and −3.0% per decade in 1979–1996 to about −10.1 and −10.7% per decade in the last 10 years. The latter trends are now comparable to the high negative trends of −10.2 and −11.4% per decade for the perennial ice extent and area, 1979–2007.

1,579 citations


Journal ArticleDOI
TL;DR: The twin STEREO spacecraft were launched on October 26, 2006, at 00:52 UT from Kennedy Space Center aboard a Delta 7925 launch vehicle to understand the causes and mechanisms of coronal mass ejection (CME) initiation and follow the propagation of CMEs through the inner heliosphere to Earth as mentioned in this paper.
Abstract: The twin STEREO spacecraft were launched on October 26, 2006, at 00:52 UT from Kennedy Space Center aboard a Delta 7925 launch vehicle. After a series of highly eccentric Earth orbits with apogees beyond the moon, each spacecraft used close flybys of the moon to escape into orbits about the Sun near 1 AU. Once in heliospheric orbit, one spacecraft trails Earth while the other leads. As viewed from the Sun, the two spacecraft separate at approximately 44 to 45 degrees per year. The purposes of the STEREO Mission are to understand the causes and mechanisms of coronal mass ejection (CME) initiation and to follow the propagation of CMEs through the inner heliosphere to Earth. Researchers will use STEREO measurements to study the mechanisms and sites of energetic particle acceleration and to develop three-dimensional (3-D) time-dependent models of the magnetic topology, temperature, density and velocity of the solar wind between the Sun and Earth. To accomplish these goals, each STEREO spacecraft is equipped with an almost identical set of optical, radio and in situ particles and fields instruments provided by U.S. and European investigators. The SECCHI suite of instruments includes two white light coronagraphs, an extreme ultraviolet imager and two heliospheric white light imagers which track CMEs out to 1 AU. The IMPACT suite of instruments measures in situ solar wind electrons, energetic electrons, protons and heavier ions. IMPACT also includes a magnetometer to measure the in situ magnetic field strength and direction. The PLASTIC instrument measures the composition of heavy ions in the ambient plasma as well as protons and alpha particles. The S/WAVES instrument uses radio waves to track the location of CME-driven shocks and the 3-D topology of open field lines along which flow particles produced by solar flares. Each of the four instrument packages produce a small real-time stream of selected data for purposes of predicting space weather events at Earth. NOAA forecasters at the Space Environment Center and others will use these data in their space weather forecasting and their resultant products will be widely used throughout the world. In addition to the four instrument teams, there is substantial participation by modeling and theory oriented teams. All STEREO data are freely available through individual Web sites at the four Principal Investigator institutions as well as at the STEREO Science Center located at NASA Goddard Space Flight Center.

1,579 citations


Journal ArticleDOI
TL;DR: The International Reference Ionosphere (IRI) is the de facto international standard for the climatological specification of ionospheric parameters and as such it is currently undergoing registration as Technical Specification (TS) of the International Standardization Organization (ISO) as discussed by the authors.

1,029 citations


Journal ArticleDOI
28 Nov 2008-Science
TL;DR: Optical observations of an exoplanet candidate, Fomalhaut b, show that the planet's mass is at most three times that of Jupiter; a higher mass would lead to gravitational disruption of the belt, matching predictions of its location.
Abstract: Fomalhaut is a bright star 7.7 parsecs (25 light years) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star and 18 AU from the dust belt, matching predictions. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 m is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 micron and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 micron.

964 citations


Journal ArticleDOI
TL;DR: In this paper, a radiative transfer-based land parameter retrieval model is used for soil moisture data retrieval, which is consistent in its retrieval approach for the entire period of data record.
Abstract: global product and is consistent in its retrieval approach for the entire period of data record. The moisture retrievals are made with a radiative transfer-based land parameter retrieval model. The various sensors have different technical specifications, including primary wavelength, spatial resolution, and temporal frequency of coverage. These sensor specifications and their effect on the data retrievals are discussed. The model is described in detail, and the quality of the data with respect to the different sensors is discussed as well. Examples of the different sensor retrievals illustrating global patterns are presented. Additional validation studies were performed with large-scale observational soil moisture data sets and are also presented. The data will be made available for use by the general science community.

908 citations


01 Dec 2008
TL;DR: The GEOS-5 global atmospheric model and data assimilation system (DAS) as discussed by the authors has been developed by NASA for the Modem Era Retrospective analysis for Research and Applications (MERRA).
Abstract: This report documents the GEOS-5 global atmospheric model and data assimilation system (DAS), including the versions 5.0.1, 5.1.0, and 5.2.0, which have been implemented in products distributed for use by various NASA instrument team algorithms and ultimately for the Modem Era Retrospective analysis for Research and Applications (MERRA). The DAS is the integration of the GEOS-5 atmospheric model with the Gridpoint Statistical Interpolation (GSI) Analysis, a joint analysis system developed by the NOAA/National Centers for Environmental Prediction and the NASA/Global Modeling and Assimilation Office. The primary performance drivers for the GEOS DAS are temperature and moisture fields suitable for the EOS instrument teams, wind fields for the transport studies of the stratospheric and tropospheric chemistry communities, and climate-quality analyses to support studies of the hydrological cycle through MERRA. The GEOS-5 atmospheric model has been approved for open source release and is available from: http://opensource.gsfc.nasa.gov/projects/GEOS-5/GEOS-5.php.

844 citations


Journal ArticleDOI
23 May 2008-Science
TL;DR: Free imagery will enable reconstruction of the history of Earth's surface back to 1972, chronicling both anthropogenic and natural changes during a time when the authors' population doubled and the impacts of climate change became noticeable.
Abstract: ![Figure][1] Free image. This Landsat 5 image of the southeastern corner of the Black Sea is part of the general U.S. archive that will be accessible for free under the new USGS policy. CREDIT: BOSTON UNIVERSITY CENTER FOR REMOTE SENSING We are entering a new era in the Landsat Program, the oldest and most venerable of our Earth-observing satellite programs. With little fanfare, the U.S. Geological Survey (USGS) has begun providing imagery for free over the Internet. Throughout the history of the Landsat Program, the cost and access to imagery has always limited our ability to study our planet and the way it is changing. Beginning with a pilot program to provide “Web-enabled” access to Landsat 7 images of the United States that were collected between 2003 and this year, the USGS now plans to provide top-quality image products for free upon request for the entire U.S. archive, including over 2 million images back to Landsat 1 (1972) [for details and schedules, see ([1][2])]. The release by NASA and the USGS in January 2008 of a new Landsat Data Distribution Policy ([2][3]) was a key step to this goal. Free imagery will enable reconstruction of the history of Earth's surface back to 1972, chronicling both anthropogenic and natural changes during a time when our population doubled and the impacts of climate change became noticeable. The Landsat Science Team: 1. 1.[↵][4]USGS Technical Announcement ([http://landsat.usgs.gov/images/squares/USGS\_Landsat\_Imagery_Release.pdf][5]). 2. 2.[↵][6]Landsat Missions ([http://ldcm.usgs.gov/pdf/Landsat\_Data\_Policy.pdf][7]). [1]: pending:yes [2]: #ref-1 [3]: #ref-2 [4]: #xref-ref-1-1 "View reference 1. in text" [5]: http://landsat.usgs.gov/images/squares/USGS_Landsat_Imagery_Release.pdf [6]: #xref-ref-2-1 "View reference 2. in text" [7]: http://ldcm.usgs.gov/pdf/Landsat_Data_Policy.pdf

785 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a suite of programs that automatically generate Swift/XRT light curves of Gamma Ray Bursts (GRBs) from X-ray light curves obtained with the UK Swift Science Data Centre.
Abstract: Context. Swift data are revolutionising our understanding of Gamma Ray Bursts. Since bursts fade rapidly, it is desirable to create and disseminate accurate light curves rapidly. Aims. To provide the community with an online repository of X-ray light curves obtained with Swift. The light curves should be of the quality expected of published data, but automatically created and updated so as to be self-consistent and rapidly available. Methods. We have produced a suite of programs which automatically generates Swift/XRT light curves of GRBs. Effects of the damage to the CCD, automatic readout-mode switching and pile-up are appropriately handled, and the data are binned with variable bin durations, as necessary for a fading source. Results. The light curve repository website ⋆⋆ contains light curves, hardness ratios and deep images for every GRB which Swift’s XRT has observed. When new GRBs are detected, light curves are created and updated within minutes of the data arriving at the UK Swift Science Data Centre.

784 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the implementation of a selected set of these parameterizations and their effects on the simulated hydrological cycle, and the results from a set of offline simulations were compared with observed data for runoff, river discharge, soil moisture, and total water storage.
Abstract: [1] The Community Land Model version 3 (CLM3) is the land component of the Community Climate System Model (CCSM). CLM3 has energy and water biases resulting from deficiencies in some of its canopy and soil parameterizations related to hydrological processes. Recent research by the community that utilizes CLM3 and the family of CCSM models has indicated several promising approaches to alleviating these biases. This paper describes the implementation of a selected set of these parameterizations and their effects on the simulated hydrological cycle. The modifications consist of surface data sets based on Moderate Resolution Imaging Spectroradiometer products, new parameterizations for canopy integration, canopy interception, frozen soil, soil water availability, and soil evaporation, a TOPMODEL-based model for surface and subsurface runoff, a groundwater model for determining water table depth, and the introduction of a factor to simulate nitrogen limitation on plant productivity. The results from a set of offline simulations were compared with observed data for runoff, river discharge, soil moisture, and total water storage to assess the performance of the new model (referred to as CLM3.5). CLM3.5 exhibits significant improvements in its partitioning of global evapotranspiration (ET) which result in wetter soils, less plant water stress, increased transpiration and photosynthesis, and an improved annual cycle of total water storage. Phase and amplitude of the runoff annual cycle is generally improved. Dramatic improvements in vegetation biogeography result when CLM3.5 is coupled to a dynamic global vegetation model. Lower than observed soil moisture variability in the rooting zone is noted as a remaining deficiency.

723 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compare with ground-based AERONET observations of aerosol optical depth (AOD) to within expected accuracy more than 60% of the time over ocean and more than 72% over land.
Abstract: [1] The recently released Collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products provide a consistent record of the Earth's aerosol system. Comparing with ground-based AERONET observations of aerosol optical depth (AOD) we find that Collection 5 MODIS aerosol products estimate AOD to within expected accuracy more than 60% of the time over ocean and more than 72% of the time over land. This is similar to previous results for ocean and better than the previous results for land. However, the new collection introduces a 0.015 offset between the Terra and Aqua global mean AOD over ocean, where none existed previously. Aqua conforms to previous values and expectations while Terra is higher than what had been expected. The cause of the offset is unknown, but changes to calibration are a possible explanation. Even though Terra's higher ocean AOD is unexpected and unexplained, we present climatological analyses of data from both sensors. We find that the multiannual global mean AOD at 550 nm over oceans is 0.13 for Aqua and 0.14 for Terra, and over land it is 0.19 in both Aqua and Terra. AOD in situations with 80% cloud fraction are twice the global mean values, although such situations occur only 2% of the time over ocean and less than 1% of the time over land. Aerosol particle size associated with these very cloudy situations does not show a drastic change over ocean, but does over land. Regionally, aerosol amounts vary from polluted areas such as east Asia and India, to the cleanest regions such as Australia and the northern continents. As AOD increases over maritime background conditions, fine mode aerosol dominates over dust over all oceans, except over the tropical Atlantic downwind of the Sahara and during some months over the Arabian Sea.

Journal ArticleDOI
17 Jul 2008-Nature
TL;DR: The diversity of phyllosilicate mineralogy is expanded with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica).
Abstract: Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L'Eau, les Glaces et l'Activitie) instrument, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity) were specific to surface environments during the earliest era of Mars's history. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability.

Journal ArticleDOI
15 Aug 2008-Science
TL;DR: Results demonstrate that substorms are likely initiated by tail reconnection, and are reported on simultaneous measurements in the magnetotail at multiple distances, at the time of substorm onset.
Abstract: Magnetospheric substorms explosively release solar wind energy previously stored in Earth's magnetotail, encompassing the entire magnetosphere and producing spectacular auroral displays. It has been unclear whether a substorm is triggered by a disruption of the electrical current flowing across the near-Earth magnetotail, at approximately 10 R(E) (R(E): Earth radius, or 6374 kilometers), or by the process of magnetic reconnection typically seen farther out in the magnetotail, at approximately 20 to 30 R(E). We report on simultaneous measurements in the magnetotail at multiple distances, at the time of substorm onset. Reconnection was observed at 20 R(E), at least 1.5 minutes before auroral intensification, at least 2 minutes before substorm expansion, and about 3 minutes before near-Earth current disruption. These results demonstrate that substorms are likely initiated by tail reconnection.

Journal ArticleDOI
01 Feb 2008-Science
TL;DR: Food insecurity is likely to increase under climate change, unless early warning systems and development programs are used more effectively, according to a report from the United Nations Environment Programme.
Abstract: Food insecurity is likely to increase under climate change, unless early warning systems and development programs are used more effectively.

Journal ArticleDOI
TL;DR: In this article, the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps is presented, where the data are modestly contaminated by diffuse Galactic foreground emission.
Abstract: We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking ~700 known bright sources from the maps, we estimate residual sources contribute ~3500 uK^2 at 41 GHz, and ~130 uK^2 at 94 GHz, to the power spectrum l*(l+1)*C_l/(2*pi) at l=1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to l~350. The spectrum clearly exhibits a first acoustic peak at l=220 and a second acoustic peak at l~540 and it provides strong support for adiabatic initial conditions. Kogut et al. (2003) analyze the C_l^TE power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by \~30% on degree angular scales, due to secondary scattering.

Journal ArticleDOI
22 May 2008-Nature
TL;DR: This work reports the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst, and attributes the outburst to the ‘break-out’ of the supernova shock wave from the progenitor star, and shows that the inferred rate of such events agrees with that of all core-collapse supernovae.
Abstract: Massive stars end their short lives in spectacular explosions—supernovae—that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

Journal ArticleDOI
Judith Racusin1, S. V. Karpov2, Marcin Sokolowski, Jonathan Granot3, Xue-Feng Wu1, Xue-Feng Wu4, V. Pal'Shin, Stefano Covino5, A. J. van der Horst, S. R. Oates6, Patricia Schady6, Robert J. Smith7, J. Cummings8, R. L. C. Starling9, Lech Wiktor Piotrowski10, Bing Zhang11, P. A. Evans9, Stephen T. Holland8, Stephen T. Holland12, Katarzyna Małek, M. T. Page6, L. Vetere1, Raffaella Margutti13, C. Guidorzi5, C. Guidorzi7, Atish Kamble14, P. A. Curran14, A. P. Beardmore9, Chryssa Kouveliotou15, Lech Mankiewicz, A. Melandri7, P. T. O'Brien9, K. L. Page9, Tsvi Piran16, Nial R. Tanvir9, Grzegorz Wrochna, R. Aptekar, Scott Barthelmy8, Corrado Bartolini17, G. M. Beskin2, S. Bondar, Malcolm N. Bremer, Sergio Campana5, A. J. Castro-Tirado18, A. Cucchiara1, M. Cwiok10, P. D'Avanzo5, Valerio D'Elia, M. Della Valle19, A. de Ugarte Postigo19, W. Dominik10, A. D. Falcone1, Fabrizio Fiore, D. B. Fox1, D. D. Frederiks, Andrew S. Fruchter20, Dino Fugazza5, M. A. Garrett21, M. A. Garrett22, M. A. Garrett23, Neil Gehrels8, S. Golenetskii, Andreja Gomboc24, Javier Gorosabel18, G. Greco17, Adriano Guarnieri17, Stefan Immler8, Martin Jelínek18, Grzegorz Kasprowicz25, V. La Parola26, Andrew J. Levan27, V. Mangano26, E. P. Mazets, E. Molinari5, A. Moretti5, Krzysztof Nawrocki, P. Oleynik, J. P. Osborne9, C. Pagani1, S. B. Pandey28, Zsolt Paragi29, M. Perri, Adalberto Piccioni17, Enrico Ramirez-Ruiz30, P. W. A. Roming1, Iain A. Steele7, Richard G. Strom14, Richard G. Strom23, Vincenzo Testa, Gino Tosti31, M. Ulanov, Klaas Wiersema9, Ralph A. M. J. Wijers14, J. M. Winters, Aleksander Filip Zarnecki10, F. M. Zerbi5, Peter Mészáros1, Guido Chincarini13, Guido Chincarini5, David N. Burrows1 
11 Sep 2008-Nature
TL;DR: Observations of the extraordinarily bright prompt optical and γ-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks.
Abstract: Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet

Journal ArticleDOI
TL;DR: This communication identifies the key features of the Landsat program that have resulted in the extensive use of Landsat data for large area land cover mapping and monitoring, and uses this list as a basis for reviewing the current constellation of earth observation satellites to identify potential alternative data sources for large Area land cover applications.

Journal ArticleDOI
TL;DR: In this article, a nonlinear optimal estimator for multivariatE spectral analySIS (NEMESIS) was developed to interpret observations of Saturn and Titan from the composite infrared spectrometer on board the NASA Cassini spacecraft.
Abstract: With the exception of in situ atmospheric probes, the most useful way to study the atmospheres of other planets is to observe their electromagnetic spectra through remote observations, either from ground-based telescopes or from spacecraft. Atmospheric properties most consistent with these observed spectra are then derived with retrieval models. All retrieval models attempt to extract the maximum amount of atmospheric information from finite sets of data, but while the problem to be solved is fundamentally the same for any planetary atmosphere, until now all such models have been assembled ad hoc to address data from individual missions. In this paper, we describe a new general-purpose retrieval model, Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS), which was originally developed to interpret observations of Saturn and Titan from the composite infrared spectrometer on board the NASA Cassini spacecraft. NEMESIS has been constructed to be generally applicable to any planetary atmosphere and can be applied from the visible/near-infrared right out to microwave wavelengths, modelling both reflected sunlight and thermal emission in either scattering or non-scattering conditions. NEMESIS has now been successfully applied to the analysis of data from many planetary missions and also ground-based observations.

Journal ArticleDOI
TL;DR: Late 20th-century anthropogenic Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies, and investing in agricultural development can help mitigate climate change while decreasing rural poverty and vulnerability.
Abstract: Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains very high, and declining per-capita agricultural capacity retards progress toward Millennium Development goals. Analyses of in situ station data and satellite observations of precipitation have identified another problematic trend: main growing-season rainfall receipts have diminished by ≈15% in food-insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain-fed agriculture, these declines are societally dangerous. Will they persist or intensify? Tracing moisture deficits upstream to an anthropogenically warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus, late 20th-century anthropogenic Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling “millions of undernourished people” as a function of rainfall, population, cultivated area, seed, and fertilizer use. Persistence of current tendencies may result in a 50% increase in undernourished people by 2030. On the other hand, modest increases in per-capita agricultural productivity could more than offset the observed precipitation declines. Investing in agricultural development can help mitigate climate change while decreasing rural poverty and vulnerability.

Journal ArticleDOI
TL;DR: In this article, the authors evaluate basinwide precipitation estimates from 9 yr (1998-2006) of TRMM Multisatellite Precipitation Analysis (TMPA; 3B42 V.6) through comparison with available gauged data and the Variable Infiltration Capacity (VIC) semidistributed hydrology model applied to the La Plata basin.
Abstract: Satellite-based precipitation estimates with high spatial and temporal resolution and large areal coverage provide a potential alternative source of forcing data for hydrological models in regions where conventional in situ precipitation measurements are not readily available. The La Plata basin in South America provides a good example of a case where the use of satellite-derived precipitation could be beneficial. This study evaluates basinwide precipitation estimates from 9 yr (1998–2006) of Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA; 3B42 V.6) through comparison with available gauged data and the Variable Infiltration Capacity (VIC) semidistributed hydrology model applied to the La Plata basin. In general, the TMPA estimates agreed well with the gridded gauge data at monthly time scales, most likely because of the monthly adjustment to gauges performed in TMPA. The agreement between TMPA and gauge precipitation estimates was reduced at daily time scal...

Journal ArticleDOI
TL;DR: In this paper, over 36,000 ground-based soil moisture measurements collected during the SGP97, SGP99, SMEX02, and SMEX03 field campaigns were analyzed to characterize the behavior of soil moisture variability across scales.
Abstract: In this study, over 36,000 ground-based soil moisture measurements collected during the SGP97, SGP99, SMEX02, and SMEX03 field campaigns were analyzed to characterize the behavior of soil moisture variability across scales. The field campaigns were conducted in Oklahoma and Iowa in the central USA. The Oklahoma study region is sub-humid with moderately rolling topography, while the Iowa study region is humid with low-relief topography. The relationship of soil moisture standard deviation, skewness and the coefficient of variation versus mean moisture content was explored at six distinct extent scales, ranging from 2.5 m to 50 km. Results showed that variability generally increases with extent scale. The standard deviation increased from 0.036 cm3/cm3 at the 2.5-m scale to 0.071 cm3/cm3 at the 50-km scale. The log standard deviation of soil moisture increased linearly with the log extent scale, from 16 m to 1.6 km, indicative of fractal scaling. The soil moisture standard deviation versus mean moisture content exhibited a convex upward relationship at the 800-m and 50-km scales, with maximum values at mean moisture contents of roughly 0.17 cm3/cm3 and 0.19 cm3/cm3, respectively. An empirical model derived from the observed behavior of soil moisture variability was used to estimate uncertainty in the mean moisture content for a fixed number of samples at the 800-m and 50-km scales, as well as the number of ground-truth samples needed to achieve 0.05 cm3/cm3 and 0.03 cm3/cm3 accuracies. The empirical relationships can also be used to parameterize surface soil moisture variations in land surface and hydrological models across a range of scales. To our knowledge, this is the first study to document the behavior of soil moisture variability over this range of extent scales using ground-based measurements. Our results will contribute not only to efficient and reliable satellite validation, but also to better utilization of remotely sensed soil moisture products for enhanced modeling and prediction.

Journal ArticleDOI
TL;DR: In this paper, a semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict the 30m ETM + spectral reflectance on the same, an antecedent, or subsequent date is presented.

Journal ArticleDOI
TL;DR: In this paper, the authors take advantage of the recent and more accurate AMSR-E data to evaluate the true seasonal and interannual variability of the sea ice cover, assess the accuracy of historical data, and determine the real trend.
Abstract: Arguably, the most remarkable manifestation of change in the polar regions is the rapid decline (of about -10 %/decade) in the Arctic perennial ice cover. Changes in the global sea ice cover, however, are more modest, being slightly positive in the Southern Hemisphere and slightly negative in the Northern Hemisphere, the significance of which has not been adequately assessed because of unknown errors in the satellite historical data. We take advantage of the recent and more accurate AMSR-E data to evaluate the true seasonal and interannual variability of the sea ice cover, assess the accuracy of historical data, and determine the real trend. Consistently derived ice concentrations from AMSR-E, SSM/I, and SMMR data were analyzed and a slight bias is observed between AMSR-E and SSM/I data mainly because of differences in resolution. Analysis of the combine SMMR, SSM/I and AMSR-E data set, with the bias corrected, shows that the trends in extent and area of sea ice in the Arctic region is -3.4 +/- 0.2 and -4.0 +/- 0.2 % per decade, respectively, while the corresponding values for the Antarctic region is 0.9 +/- 0.2 and 1.7 .+/- 0.3 % per decade. The higher resolution of the AMSR-E provides an improved determination of the location of the ice edge while the SSM/I data show an ice edge about 6 to 12 km further away from the ice pack. Although the current record of AMSR-E is less than 5 years, the data can be utilized in combination with historical data for more accurate determination of the variability and trends in the ice cover.

Journal ArticleDOI
TL;DR: A brief introduction to modern data assimilation methods in the Earth sciences, their applications, and pertinent research questions can be found in this article, where the authors point out examples of the assimilation of remotely sensed observations in land surface hydrology.

Journal ArticleDOI
TL;DR: In this paper, the spatial-temporal variations in terrestrial water storage changes (TWSC) from GRACE and compare them to those simulated with the Global Land Data Assimilation System (GLDAS).
Abstract: Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided first estimates of land water storage variations by monitoring the time-variable component of Earth's gravity field. Here we characterize spatial-temporal variations in terrestrial water storage changes (TWSC) from GRACE and compare them to those simulated with the Global Land Data Assimilation System (GLDAS). Additionally, we use GLDAS simulations to infer how TWSC is partitioned into snow, canopy water and soil water components, and to understand how variations in the hydrologic fluxes act to enhance or dissipate the stores. Results quantify the range of GRACE-derived storage changes during the studied period and place them in the context of seasonal variations in global climate and hydrologic extremes including drought and flood, by impacting land memory processes. The role of the largest continental river basins as major locations for freshwater redistribution is highlighted. GRACE-based storage changes are in good agreement with those obtained from GLDAS simulations. Analysis of GLDAS-simulated TWSC illustrates several key characteristics of spatial and temporal land water storage variations. Global averages of TWSC were partitioned nearly equally between soil moisture and snow water equivalent, while zonal averages of TWSC revealed the importance of soil moisture storage at low latitudes and snow storage at high latitudes. Evapotranspiration plays a key role in dissipating globally averaged terrestrial water storage. Latitudinal averages showed how precipitation dominates TWSC variations in the tropics, evapotranspiration is most effective in the midlatitudes, and snowmelt runoff is a key dissipating flux at high latitudes. Results have implications for monitoring water storage response to climate variability and change, and for constraining land model hydrology simulations.

Journal ArticleDOI
TL;DR: In this article, images and the radial profiles of the temperature, abundance, and brightness for 70 clusters of galaxies observed by XMM-Newton are presented along with a detailed discussion of the data reduction and analysis methods, including background modeling, which were used in the processing.
Abstract: Images and the radial profiles of the temperature, abundance, and brightness for 70 clusters of galaxies observed by XMM-Newton are presented along with a detailed discussion of the data reduction and analysis methods, including background modeling, which were used in the processing. Proper consideration of the various background components is vital to extend the reliable determination of cluster parameters to the largest possible cluster radii. The various components of the background including the quiescent particle background, cosmic diffuse emission, soft proton contamination, and solar wind charge exchange emission are discussed along with suggested means of their identification, filtering, and/or their modeling and subtraction. Every component is spectrally variable, sometimes significantly so, and all components except the cosmic background are temporally variable as well. The distributions of the events over the FOV vary between the components, and some distributions vary with energy. The scientific results from observations of low surface brightness objects and the diffuse background itself can be strongly affected by these background components and therefore great care should be taken in their consideration.

Journal ArticleDOI
TL;DR: In this paper, the temporal change in a Tasseled-cap "disturbance index" calculated from the early (~1990) and later (~2000) images was calculated.

Journal ArticleDOI
TL;DR: In this paper, the authors attributed significantly increased Greenland summer warmth and Greenland ice sheet melt and runoff since 1990 to global warming, which was modulated by the North Atlantic Oscillation, whose summer index was significantly (negatively) correlated with southern Greenland summer temperatures until the early 1990s but not thereafter.
Abstract: The authors attribute significantly increased Greenland summer warmth and Greenland Ice Sheet melt and runoff since 1990 to global warming. Southern Greenland coastal and Northern Hemisphere summer temperatures were uncorrelated between the 1960s and early 1990s but were significantly positively correlated thereafter. This relationship appears to have been modulated by the North Atlantic Oscillation, whose summer index was significantly (negatively) correlated with southern Greenland summer temperatures until the early 1990s but not thereafter. Significant warming in southern Greenland since 1990, as also evidenced from Swiss Camp on the west flank of the ice sheet, therefore reflects general Northern Hemisphere and global warming. Summer 2003 was the warmest since at least 1958 in coastal southern Greenland. The second warmest coastal summer 2005 had the most extensive anomalously warm conditions over the ablation zone of the ice sheet, which caused a record melt extent. The year 2006 was the third warmest in coastal southern Greenland and had the third-highest modeled runoff in the last 49 yr from the ice sheet; five of the nine highest runoff years occurred since 2001 inclusive. Significantly rising runoff since 1958 was largely compensated by increased precipitation and snow accumulation. Also, as observed since 1987 in a single composite record at Summit, summer temperatures near the top of the ice sheet have declined slightly but not significantly, suggesting the overall ice sheet is experiencing a dichotomous response to the recent general warming: possible reasons include the ice sheet’s high thermal inertia, higher atmospheric cooling, or changes in regional wind, cloud, and/or radiation patterns.

Journal ArticleDOI
TL;DR: The Plasma and Suprathermal Ion Composition (PLASTIC) investigation as discussed by the authors provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B).
Abstract: The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ∼0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided.