scispace - formally typeset
Search or ask a question
Institution

Goddard Space Flight Center

FacilityGreenbelt, Maryland, United States
About: Goddard Space Flight Center is a facility organization based out in Greenbelt, Maryland, United States. It is known for research contribution in the topics: Galaxy & Solar wind. The organization has 19058 authors who have published 63344 publications receiving 2786037 citations. The organization is also known as: GSFC & Space Flight Center.
Topics: Galaxy, Solar wind, Magnetosphere, Stars, Population


Papers
More filters
Journal ArticleDOI
17 Apr 1997-Nature
TL;DR: In this paper, the authors present evidence from satellite data that the photosynthetic activity of terrestrial vegetation increased from 1981 to 1991 in a manner that is suggestive of an increase in plant growth associated with a lengthening of the active growing season.
Abstract: Variations in the amplitude and timing of the seasonal cycle of atmospheric CO2 have shown an association with surface air temperature consistent with the hypothesis that warmer temperatures have promoted increases in plant growth during summer1 and/or plant respiration during winter2 in the northern high latitudes. Here we present evidence from satellite data that the photosynthetic activity of terrestrial vegetation increased from 1981 to 1991 in a manner that is suggestive of an increase in plant growth associated with a lengthening of the active growing season. The regions exhibiting the greatest increase lie between 45°N and 70°N, where marked warming has occurred in the spring time3 due to an early disappearance of snow4. The satellite data are concordant with an increase in the amplitude of the seasonal cycle of atmospheric carbon dioxide exceeding 20% since the early 1970s, and an advance of up to seven days in the timing of the drawdown of CO2 in spring and early summer1. Thus, both the satellite data and the CO2 record indicate that the global carbon cycle has responded to interannual fluctuations in surface air temperature which, although small at the global scale, are regionally highly significant.

3,368 citations

Journal ArticleDOI
TL;DR: In this article, Orthogonally rotated principle component analysis (RPCA) was used to identify and describe the seasonality and persistence of the major modes of interannual variability.
Abstract: Orthogonally rotated principle component analysis (RPCA) of Northern Hemisphere 1-month mean 700 mb heights is used to identify and describe the seasonality and persistence of the major modes of interannual variability. The analysis is detailed and comprehensive, in that 1) a high resolution, approximately equal-area 358-point grid is used for the virtually maximum possible 35-year period of record, 2) a positive bias in the NMC data base in the early 1950s in the subtropics is largely eliminated for the first time, and 3) homogeneous, separate analyses of each month of the year are carried out, detailing the mouth-to-month changes in the dominant circulation patterns. Winter results are similar to those of other recent RPCA and teleconnection studies except that some less obvious patterns are identified and further detail of the better-known patterns is provided. Two north-south dipole patterns are found over the Pacific Ocean (West Pacific Oscillation and East Pacific pattern) and over the Atla...

3,330 citations

Journal ArticleDOI
TL;DR: An advanced, thoroughly documented, and quite general purpose discrete ordinate algorithm for time-independent transfer calculations in vertically inhomogeneous, nonisothermal, plane-parallel media for Atmospheric applications ranging from the UV to the radar region of the electromagnetic spectrum is summarized.
Abstract: The transfer of monochromatic radiation in a scattering, absorbing, and emitting plane-parallel medium with a specified bidirectional reflectivity at the lower boundary is considered. The equations and boundary conditions are summarized. The numerical implementation of the theory is discussed with attention given to the reliable and efficient computation of eigenvalues and eigenvectors. Ways of avoiding fatal overflows and ill-conditioning in the matrix inversion needed to determine the integration constants are also presented.

3,257 citations

Journal ArticleDOI
06 Jun 2003-Science
TL;DR: It is indicated that global changes in climate have eased several critical climatic constraints to plant growth, such that net primary production increased 6% (3.4 petagrams of carbon over 18 years) globally.
Abstract: Recent climatic changes have enhanced plant growth in northern mid-latitudes and high latitudes. However, a comprehensive analysis of the impact of global climatic changes on vegetation productivity has not before been expressed in the context of variable limiting factors to plant growth. We present a global investigation of vegetation responses to climatic changes by analyzing 18 years (1982 to 1999) of both climatic data and satellite observations of vegetation activity. Our results indicate that global changes in climate have eased several critical climatic constraints to plant growth, such that net primary production increased 6% (3.4 petagrams of carbon over 18 years) globally. The largest increase was in tropical ecosystems. Amazon rain forests accounted for 42% of the global increase in net primary production, owing mainly to decreased cloud cover and the resulting increase in solar radiation.

3,126 citations

Journal ArticleDOI
TL;DR: The Solar Dynamics Observatory (SDO) was launched on 11 February 2010 at 15:23 UT from Kennedy Space Center aboard an Atlas V 401 (AV-021) launch vehicle as mentioned in this paper.
Abstract: The Solar Dynamics Observatory (SDO) was launched on 11 February 2010 at 15:23 UT from Kennedy Space Center aboard an Atlas V 401 (AV-021) launch vehicle. A series of apogee-motor firings lifted SDO from an initial geosynchronous transfer orbit into a circular geosynchronous orbit inclined by 28° about the longitude of the SDO-dedicated ground station in New Mexico. SDO began returning science data on 1 May 2010. SDO is the first space-weather mission in NASA’s Living With a Star (LWS) Program. SDO’s main goal is to understand, driving toward a predictive capability, those solar variations that influence life on Earth and humanity’s technological systems. The SDO science investigations will determine how the Sun’s magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. Insights gained from SDO investigations will also lead to an increased understanding of the role that solar variability plays in changes in Earth’s atmospheric chemistry and climate. The SDO mission includes three scientific investigations (the Atmospheric Imaging Assembly (AIA), Extreme Ultraviolet Variability Experiment (EVE), and Helioseismic and Magnetic Imager (HMI)), a spacecraft bus, and a dedicated ground station to handle the telemetry. The Goddard Space Flight Center built and will operate the spacecraft during its planned five-year mission life; this includes: commanding the spacecraft, receiving the science data, and forwarding that data to the science teams. The science investigations teams at Stanford University, Lockheed Martin Solar Astrophysics Laboratory (LMSAL), and University of Colorado Laboratory for Atmospheric and Space Physics (LASP) will process, analyze, distribute, and archive the science data. We will describe the building of SDO and the science that it will provide to NASA.

3,043 citations


Authors

Showing all 19247 results

NameH-indexPapersCitations
Anton M. Koekemoer1681127106796
Alexander S. Szalay166936145745
David W. Johnson1602714140778
Donald G. York160681156579
Takeo Kanade147799103237
Gillian R. Knapp145460121477
Olaf Reimer14471674359
R. A. Sunyaev141848107966
Christopher T. Russell137237897268
Hui Li1352982105903
Neil Gehrels13472780804
Christopher B. Field13340888930
Igor V. Moskalenko13254258182
William T. Reach13153590496
Adam Burrows13062355483
Network Information
Related Institutions (5)
Marshall Space Flight Center
14.5K papers, 324.4K citations

91% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

90% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

90% related

California Institute of Technology
146.6K papers, 8.6M citations

88% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023186
2022327
20211,815
20202,153
20192,210
20182,325