scispace - formally typeset
Search or ask a question
Institution

Government College

About: Government College is a based out in . It is known for research contribution in the topics: Population & Ring (chemistry). The organization has 4481 authors who have published 5986 publications receiving 57398 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Plants with high Fic and FL values could be further investigated in vitro for the search of some novel bioactive compounds and young generation should be educated regarding ethnoveterinary practices.
Abstract: The aims of the present study were (i) to document ethnoveterinary plants and their formulation techniques in an unexplored region of Pakistan and (ii) to select candidate medicinal plants with high consensus factor and fidelity value for further in vitro investigation. A total of 60 informants were interviewed using semistructured questionnaire. A total of 41 plants belonging to 30 families were used to treat livestock ailments in study area. Mostly leaves (47%) were used in recipes formulation mostly in the form of decoction. Gastrointestinal infections were found more common and majority of the plants were used against cow (31) and buffaloes (24) ailments. Recovery time of majority of the recipes was three to four days. Informant consensus factor (Fic) results have shown a high degree of consensus for gastrointestinal, respiratory, and reproductive (0.95 each) ailments. Fidelity level (FL) results showed that Asparagus gracilis ranked first with FL value 93% followed by Rumex hastatus ranked second (91%) and Tinospora cordifolia ranked third (90%). Aged farmers and nomads had more traditional knowledge as compared to younger ones. Plants with high Fic and FL values could be further investigated in vitro for the search of some novel bioactive compounds and young generation should be educated regarding ethnoveterinary practices.

42 citations

Journal ArticleDOI
TL;DR: The biological activities of some ternary nickel complexes with a Schiff base obtained from 4-dimethylaminobenzaldehyde and 2-aminophenol have been reported and anticancer activity of these compounds was studied against human colon carcinoma, human hepatocellular liver carcinoma and human breast carcinoma cell lines.
Abstract: The biological activities of some ternary nickel complexes with a Schiff base obtained from 4-dimethylaminobenzaldehyde and 2-aminophenol have been reported. The Schiff base (HL1) acts as a primary ligand whereas, anthranilic acid (HL2), 2-nitroaniline (HL3), alanine (HL4) and histidine (HL5) act as secondary ligand or co-ligand. The anticancer activity of these compounds was studied against human colon carcinoma (HCT-116), human hepatocellular liver carcinoma (HEPG-2) and human breast carcinoma (MCF-7) cell lines. As per the results, the compounds were active against the cell lines. The antioxidant activity of the same compounds was evaluated using DPPH (1,1-diphenyl-2-picryl-hydrazyl) radical scavenging and compared with ascorbic acid. The DFT computations for these compounds were made to understand the bonding mode by a GAUSSIAN 09 program. Moreover, a docking analysis using Autodock 4.2 software package was carried out against the tyrosine kinase receptor (PDB ID: 1M17). In addition, QSAR investigation was also performed to understand the biological potency of the ligand.

42 citations

Journal ArticleDOI
TL;DR: Antioxidant, proton pump inhibition as well as boosting of gastric mucin effects of S RAE have been implicated to be responsible for antiulcer property of SRAE.

42 citations

Journal ArticleDOI
TL;DR: A new series of compounds were designed, calculated the activities, and found that they were more potent than the existing compounds, including caffeoyl naphthalene sulfonamide derivatives, which act against HIV integrase.
Abstract: Human immunodeficiency virus type 1 (HIV-1) integrase is a potential target for anti-HIV therapy. It is an essential enzyme required for replication of the acquired immunodeficiency syndrome (AIDS) virus. Caffeoyl naphthalene sulfonamide derivatives act against HIV integrase and thus have the potential to become a part of an anti-HIV drug regimen. Although caffeoyl naphthalene sulfonamide derivatives have all the features required of good anti-HIV agents such as the presence of bis-catechol moieties, polyaromatic rings, and a central linker, they do not perform well as anti-HIV agents in cell-based assays, that is, they do not stop viral replication at nontoxic concentration. We carried out a quantitative structure–activity relationship (QSAR) study of caffeoyl naphthalene sulfonamide derivatives via the software WIN CAChe 6.1 and STATISTICA to improve its activity. QSAR reveals that if partition coefficient, connectivity index, and shape index of these molecules are altered, the activity is likely to increase. On the basis of the QSAR model, we designed a new series of compounds, calculated the activities, and found that they were more potent than the existing compounds.

42 citations

Journal ArticleDOI
16 Jul 2020-Ionics
TL;DR: In this article, modified ZnO nanostructures by the dopant Zr in three different compositions (3, 6 and 9 wt% Zr-doped ZnOs) via chemical coprecipitation method were characterized by physio-chemical methods.
Abstract: Simple electrochemical capacitors are promising energy storage devices because of their power capability, charge/discharge rates and life cycle. Zinc oxide is an inexpensive and eco-friendly material which can be used as a supercapacitor electrode relative to other materials with great features. With a view to enhance the electrochemical performance of ZnO (Csp of 324), the present work is focused to synthesize modified ZnO nanostructures by the dopant Zr in three different compositions (3, 6 and 9 wt% Zr-doped ZnO) via chemical coprecipitation method. The synthesized materials were characterized by physio-chemical methods. The significant capacitive behaviour of ZnO and modified ZnO and 9 wt%Zr-doped ZnO nanostructure were investigated by cyclic voltammetric (CV) studies, galvanostatic charge-discharge (GCD) analysis and electrochemical impedance spectroscopic (EIS) methods in aqueous 1 M KOH. The newly fabricated 9 wt% Zr-doped ZnO electrode exhibited excellent specific capacitance of 518 Fg−1 at a current density of 1 Ag−1. Additionally, it depicted the capacitance retention of 94% even after 5000 successive GCD cycles. Moreover, the as-prepared materials demonstrated electrochemical reversible nature.

42 citations


Authors

Showing all 4481 results

NameH-indexPapersCitations
Rajesh Kumar1494439140830
Sanjeev Kumar113132554386
Rakesh Kumar91195939017
Praveen Kumar88133935718
V. Balasubramanian5445710951
Ghulam Murtaza53100514516
Marimuthu Govindarajan522126738
Muhammad Akram433937329
Ghulam Abbas404396396
Shivaji H. Pawar391684754
Muhammad Afzal381184318
Deepankar Choudhury351993543
Hidayat Hussain343165185
Hitesh Panchal341523161
Sher Singh Meena331873547
Network Information
Related Institutions (5)
Aligarh Muslim University
16.4K papers, 289K citations

89% related

Panjab University, Chandigarh
18.7K papers, 461K citations

89% related

Jadavpur University
27.6K papers, 422K citations

89% related

Banaras Hindu University
23.9K papers, 464.6K citations

88% related

VIT University
24.4K papers, 261.8K citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202227
2021991
2020797
2019477
2018486
2017437