scispace - formally typeset
Search or ask a question
Institution

Guy's and St Thomas' NHS Foundation Trust

HealthcareLondon, United Kingdom
About: Guy's and St Thomas' NHS Foundation Trust is a healthcare organization based out in London, United Kingdom. It is known for research contribution in the topics: Population & Medicine. The organization has 7686 authors who have published 9631 publications receiving 399353 citations. The organization is also known as: Guy's and St Thomas' National Health Service Foundation Trust & Guy's and St Thomas' National Health Service Trust.


Papers
More filters
Journal ArticleDOI
TL;DR: It is hypothesize that the different COVID-19 patterns found at presentation in the emergency department depend on the interaction between three factors: the severity of the infection, the host response, physiological reserve and comorbidities; the ventilatory responsiveness of the patient to hypoxemia; and the time elapsed between the onset of the disease and the observation in the hospital.
Abstract: The Surviving Sepsis Campaign panel recently recommended that “mechanically ventilated patients with COVID-19 should be managed similarly to other patients with acute respiratory failure in the ICU [1].” Yet, COVID-19 pneumonia [2], despite falling in most of the circumstances under the Berlin definition of ARDS [3], is a specific disease, whose distinctive features are severe hypoxemia often associated with near normal respiratory system compliance (more than 50% of the 150 patients measured by the authors and further confirmed by several colleagues in Northern Italy). This remarkable combination is almost never seen in severe ARDS. These severely hypoxemic patients despite sharing a single etiology (SARS-CoV-2) may present quite differently from one another: normally breathing (“silent” hypoxemia) or remarkably dyspneic; quite responsive to nitric oxide or not; deeply hypocapnic or normo/hypercapnic; and either responsive to prone position or not. Therefore, the same disease actually presents itself with impressive non-uniformity. Based on detailed observation of several cases and discussions with colleagues treating these patients, we hypothesize that the different COVID-19 patterns found at presentation in the emergency department depend on the interaction between three factors: (1) the severity of the infection, the host response, physiological reserve and comorbidities; (2) the ventilatory responsiveness of the patient to hypoxemia; (3) the time elapsed between the onset of the disease and the observation in the hospital. The interaction between these factors leads to the development of a time-related disease spectrum within two primary “phenotypes”: Type L, characterized by Low elastance (i.e., high compliance), Low ventilation-to-perfusion ratio, Low lung weight and Low recruitability and Type H, characterized by High elastance, High right-toleft shunt, High lung weight and High recruitability.

1,378 citations

Journal ArticleDOI
16 Oct 2013-JAMA
TL;DR: A comprehensive prospective characterization of skeletal muscle wasting, defining the pathogenic roles of altered protein synthesis and breakdown was performed and skeletal muscle loss was determined through serial ultrasound measurement.
Abstract: Importance Survivors of critical illness demonstrate skeletal muscle wasting with associated functional impairment. Objective To perform a comprehensive prospective characterization of skeletal muscle wasting, defining the pathogenic roles of altered protein synthesis and breakdown. Design, Setting, and Participants Sixty-three critically ill patients (59% male; mean age: 54.7 years [95% CI, 50.0-59.6 years]) with an Acute Physiology and Chronic Health Evaluation II score of 23.5 (95% CI, 21.9-25.2) were prospectively recruited within 24 hours following intensive care unit (ICU) admission from August 2009 to April 2011 at a university teaching and a community hospital in England. Patients were recruited if older than 18 years and were anticipated to be intubated for longer than 48 hours, to spend more than 7 days in critical care, and to survive ICU stay. Main Outcomes and Measures Muscle loss was determined through serial ultrasound measurement of the rectus femoris cross-sectional area (CSA) on days 1, 3, 7, and 10. In a subset of patients, the fiber CSA area was quantified along with the ratio of protein to DNA on days 1 and 7. Histopathological analysis was performed. In addition, muscle protein synthesis, breakdown rates, and respective signaling pathways were characterized. Results There were significant reductions in the rectus femoris CSA observed at day 10 (−17.7% [95% CI, −20.9% to −4.8%]; P P P = .03). Myofiber necrosis occurred in 20 of 37 patients (54.1%). Protein synthesis measured by the muscle protein fractional synthetic rate was depressed in patients on day 1 (0.035%/hour; 95% CI, 0.023% to 0.047%/hour) compared with rates observed in fasted healthy controls (0.039%/hour; 95% CI, 0.029% to 0.048%/hour) ( P = .57) and increased by day 7 (0.076% [95% CI, 0.032%-0.120%/hour]; P = .03) to rates associated with fed controls (0.065%/hour [95% CI, 0.049% to 0.080%/hour]; P = .30), independent of nutritional load. Leg protein breakdown remained elevated throughout the study (8.5 [95% CI, 4.7 to 12.3] to 10.6 [95% CI, 6.8 to 14.4] μmol of phenylalanine/min/ideal body weight × 100; P = .40). The pattern of intracellular signaling supported increased breakdown (n = 9, r = −0.83, P = .005) and decreased synthesis (n = 9, r = −0.69, P = .04). Conclusions and Relevance Among these critically ill patients, muscle wasting occurred early and rapidly during the first week of critical illness and was more severe among those with multiorgan failure compared with single organ failure. These findings may provide insights into skeletal muscle wasting in critical illness.

1,338 citations

Journal ArticleDOI
TL;DR: The Surviving Sepsis Campaign was associated with sustained, continuous quality improvement in sepsis care and a reduction in reported hospital mortality rates wasassociated with participation.
Abstract: Objective The Surviving Sepsis Campaign (SSC or “the Campaign”) developed guidelines for management of severe sepsis and septic shock. A performance improvement initiative targeted changing clinical behavior (process improvement) via bundles based on key SSC guideline recommendations on process improvement and patient outcomes.

1,323 citations

Journal ArticleDOI
Paul Burton1, David Clayton2, Lon R. Cardon1, Nicholas John Craddock3  +221 moreInstitutions (30)
TL;DR: In this paper, the authors report initial association and independent replication in a North American sample of two new loci related to ankylosing spondylitis, ARTS1 and IL23R, and confirm the previously reported association of AITD with TSHR and FCRL3.
Abstract: We have genotyped 14,436 nonsynonymous SNPs (nsSNPs) and 897 major histocompatibility complex (MHC) tag SNPs from 1,000 independent cases of ankylosing spondylitis (AS), autoimmune thyroid disease (AITD), multiple sclerosis (MS) and breast cancer (BC). Comparing these data against a common control dataset derived from 1,500 randomly selected healthy British individuals, we report initial association and independent replication in a North American sample of two new loci related to ankylosing spondylitis, ARTS1 and IL23R, and confirmation of the previously reported association of AITD with TSHR and FCRL3. These findings, enabled in part by increased statistical power resulting from the expansion of the control reference group to include individuals from the other disease groups, highlight notable new possibilities for autoimmune regulation and suggest that IL23R may be a common susceptibility factor for the major 'seronegative' diseases.

1,299 citations

Journal ArticleDOI
Carl A. Anderson1, Gabrielle Boucher2, Charlie W. Lees3, Andre Franke4, Mauro D'Amato5, Kent D. Taylor6, James Lee7, Philippe Goyette2, Marcin Imielinski8, Anna Latiano9, Caroline Lagacé2, Regan Scott10, Leila Amininejad11, Suzannah Bumpstead1, Leonard Baidoo10, Robert N. Baldassano8, Murray L. Barclay12, Theodore M. Bayless13, Stephan Brand14, Carsten Büning15, Jean-Frederic Colombel16, Lee A. Denson17, Martine De Vos18, Marla Dubinsky6, Cathryn Edwards19, David Ellinghaus4, Rudolf S N Fehrmann20, James A B Floyd1, Timothy H. Florin21, Denis Franchimont11, Lude Franke20, Michel Georges22, Jürgen Glas14, Nicole L. Glazer23, Stephen L. Guthery24, Talin Haritunians6, Nicholas K. Hayward25, Jean-Pierre Hugot26, Gilles Jobin2, Debby Laukens18, Ian C. Lawrance27, Marc Lémann26, Arie Levine28, Cécile Libioulle22, Edouard Louis22, Dermot P.B. McGovern6, Monica Milla, Grant W. Montgomery25, Katherine I. Morley1, Craig Mowat29, Aylwin Ng30, William G. Newman31, Roel A. Ophoff32, Laura Papi33, Orazio Palmieri9, Laurent Peyrin-Biroulet, Julián Panés, Anne M. Phillips29, Natalie J. Prescott34, Deborah D. Proctor35, Rebecca L. Roberts12, Richard K Russell36, Paul Rutgeerts37, Jeremy D. Sanderson38, Miquel Sans39, Philip Schumm40, Frank Seibold41, Yashoda Sharma35, Lisa A. Simms25, Mark Seielstad42, Mark Seielstad43, A. Hillary Steinhart44, Stephan R. Targan6, Leonard H. van den Berg32, Morten H. Vatn45, Hein W. Verspaget46, Thomas D. Walters44, Cisca Wijmenga20, David C. Wilson3, Harm-Jan Westra20, Ramnik J. Xavier30, Zhen Zhen Zhao25, Cyriel Y. Ponsioen47, Vibeke Andersen48, Leif Törkvist5, Maria Gazouli49, Nicholas P. Anagnou49, Tom H. Karlsen45, Limas Kupčinskas50, Jurgita Sventoraityte50, John C. Mansfield51, Subra Kugathasan52, Mark S. Silverberg44, Jonas Halfvarson53, Jerome I. Rotter6, Christopher G. Mathew34, Anne M. Griffiths44, Richard B. Gearry12, Tariq Ahmad, Steven R. Brant13, Mathias Chamaillard54, Jack Satsangi3, Judy H. Cho35, Stefan Schreiber4, Mark J. Daly30, Jeffrey C. Barrett1, Miles Parkes7, Vito Annese9, Hakon Hakonarson55, Graham L. Radford-Smith25, Richard H. Duerr10, Severine Vermeire37, Rinse K. Weersma20, John D. Rioux2 
Wellcome Trust Sanger Institute1, Université de Montréal2, University of Edinburgh3, University of Kiel4, Karolinska Institutet5, Cedars-Sinai Medical Center6, University of Cambridge7, University of Pennsylvania8, Casa Sollievo della Sofferenza9, University of Pittsburgh10, Université libre de Bruxelles11, University of Otago12, Johns Hopkins University13, Ludwig Maximilian University of Munich14, Charité15, Lille University of Science and Technology16, Cincinnati Children's Hospital Medical Center17, Ghent University18, Torbay Hospital19, University of Groningen20, Mater Health Services21, University of Liège22, University of Washington23, University of Utah24, QIMR Berghofer Medical Research Institute25, University of Paris26, University of Western Australia27, Tel Aviv University28, University of Dundee29, Harvard University30, University of Manchester31, Utrecht University32, University of Florence33, King's College London34, Yale University35, Royal Hospital for Sick Children36, Katholieke Universiteit Leuven37, Guy's and St Thomas' NHS Foundation Trust38, University of Barcelona39, University of Chicago40, University of Bern41, Agency for Science, Technology and Research42, University of California, San Francisco43, University of Toronto44, University of Oslo45, Leiden University46, University of Amsterdam47, Aarhus University48, National and Kapodistrian University of Athens49, Lithuanian University of Health Sciences50, Newcastle University51, Emory University52, Örebro University53, French Institute of Health and Medical Research54, Center for Applied Genomics55
TL;DR: A meta-analysis of six ulcerative colitis genome-wide association study datasets found many candidate genes that provide potentially important insights into disease pathogenesis, including IL1R2, IL8RA-IL8RB, IL7R, IL12B, DAP, PRDM1, JAK2, IRF5, GNA12 and LSP1.
Abstract: Genome-wide association studies and candidate gene studies in ulcerative colitis have identified 18 susceptibility loci. We conducted a meta-analysis of six ulcerative colitis genome-wide association study datasets, comprising 6,687 cases and 19,718 controls, and followed up the top association signals in 9,628 cases and 12,917 controls. We identified 29 additional risk loci (P < 5 × 10(-8)), increasing the number of ulcerative colitis-associated loci to 47. After annotating associated regions using GRAIL, expression quantitative trait loci data and correlations with non-synonymous SNPs, we identified many candidate genes that provide potentially important insights into disease pathogenesis, including IL1R2, IL8RA-IL8RB, IL7R, IL12B, DAP, PRDM1, JAK2, IRF5, GNA12 and LSP1. The total number of confirmed inflammatory bowel disease risk loci is now 99, including a minimum of 28 shared association signals between Crohn's disease and ulcerative colitis.

1,291 citations


Authors

Showing all 7765 results

NameH-indexPapersCitations
Christopher J L Murray209754310329
Bruce M. Psaty1811205138244
Giuseppe Remuzzi1721226160440
Mika Kivimäki1661515141468
Simon I. Hay165557153307
Theo Vos156502186409
Ali H. Mokdad156634160599
Steven Williams144137586712
Igor Rudan142658103659
Mohsen Naghavi139381169048
Christopher D.M. Fletcher13867482484
Martin McKee1381732125972
David A. Jackson136109568352
Graham G. Giles136124980038
Yang Liu1292506122380
Network Information
Related Institutions (5)
University Medical Center Groningen
30.3K papers, 967K citations

93% related

Royal Free Hospital
15.7K papers, 651.9K citations

93% related

John Radcliffe Hospital
23.6K papers, 1.4M citations

92% related

Radboud University Nijmegen Medical Centre
12.6K papers, 659.2K citations

92% related

Leiden University Medical Center
38K papers, 1.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202298
20211,488
20201,123
2019829
2018767