scispace - formally typeset
Search or ask a question
Institution

Harbin Engineering University

EducationHarbin, Heilongjiang, China
About: Harbin Engineering University is a education organization based out in Harbin, Heilongjiang, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 31149 authors who have published 27940 publications receiving 276787 citations. The organization is also known as: HEU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the change of the heterojunction barrier formed at the interface between CeO 2 and TiO 2 to explain the enhanced ethanol sensing properties of crystal core/shell nanorods.
Abstract: Crystalline CeO 2 /TiO 2 core/shell nanorods were fabricated by a hydrothermal method and a subsequent annealing process under the hydrogen and air atmosphere. The thickness of the outer shell composed of crystal TiO 2 nanoparticles can be tuned in the range of 5–11 nm. The crystal core/shell nanorods exhibited enhanced gas-sensing properties to ethanol vapor in terms of sensor response and selectivity. The calculated sensor response based on the change of the heterojunction barrier formed at the interface between CeO 2 and TiO 2 is agreed with the experimental results, and thus the change of the heterojunction barrier at different gas atmosphere can be used to explain the enhanced ethanol sensing properties.

104 citations

Journal ArticleDOI
TL;DR: In this article, the core/shell heterostructures electrodes are considered as a promising strategy to enhance the electrochemical property of the supercapacitors, and the authors demonstrate their performance.
Abstract: Fabrication and design of core/shell heterostructures electrodes are considered as a promising strategy to enhance the electrochemical property of the supercapacitors. In this study, we demonstrate...

104 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed an analytical framework of the linear innovation process under the global value chain, and uses factor analysis and a DEA-Tobit two-stage method to analyze the low-carbon technological innovation performance and its influencing factors of China's manufacturing industry under global value chains.

104 citations

Journal ArticleDOI
TL;DR: In this paper, a unified method is presented for the vibration analysis of the plates mentioned above with general boundary conditions based on the first-order shear deformation theory and Ritz procedure.
Abstract: The vibrations of functionally graded circular plates, annular plates, and annular, circular sectorial plates have been traditionally treated as different boundary value problems, which results in numerous specific solution algorithms and procedures. It is the problem itself that has been an overwhelming task for a new researcher or application engineer to comprehend. Furthermore each type of plate usually needs treating separately when different boundary conditions are involved. In this paper, a unified method is presented for the vibration analysis of the plates mentioned above with general boundary conditions based on the first-order shear deformation theory and Ritz procedure. The material properties are assumed to vary continuously through the thickness according to the general four-parameter power-law distribution. Regardless of the shapes of the plates and the types of boundary conditions, the displacements of the plates are described as an improved Fourier series expansion which is composed of a double Fourier cosine series and several auxiliary functions. As an innovative point of this work, the auxiliary functions are introduced to eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries and to accelerate the convergence of series representations. The accuracy, reliability and versatility of the current solution are fully demonstrated and verified through numerical examples involving plates with various shapes and boundary conditions. Some new results of functionally graded circular, annular and sector plates with various boundary conditions are presented, which may serve as datum solutions for future computational methods. In addition, the influence of boundary conditions, the material and geometric parameters on the vibration characteristics of the plates are also reported.

104 citations

Journal ArticleDOI
TL;DR: The results shown in the present study provide an effective method to design graphene based composites with layered structure and high performance as well as excellent tensile and compressive strengths, high hardness and good electrical conductivity are obtained simultaneously in the RGO-Cu composites.
Abstract: Graphene with ultrahigh intrinsic strength and excellent thermal physical properties has the potential to be used as the reinforcement of many kinds of composites. Here, we show that very high tensile strength can be obtained in the copper matrix composite reinforced by reduced graphene oxide (RGO) when micro-layered structure is achieved. RGO-Cu powder with micro-layered structure is fabricated from the reduction of the micro-layered graphene oxide (GO) and Cu(OH)2 composite sheets, and RGO-Cu composites are sintered by spark plasma sintering process. The tensile strength of the 5 vol.% RGO-Cu composite is as high as 608 MPa, which is more than three times higher than that of the Cu matrix. The apparent strengthening efficiency of RGO in the 2.5 vol.% RGO-Cu composite is as high as 110, even higher than that of carbon nanotube, multilayer graphene, carbon nano fiber and RGO in the copper matrix composites produced by conventional MLM method. The excellent tensile and compressive strengths, high hardness and good electrical conductivity are obtained simultaneously in the RGO-Cu composites. The results shown in the present study provide an effective method to design graphene based composites with layered structure and high performance.

104 citations


Authors

Showing all 31363 results

NameH-indexPapersCitations
Peng Shi137137165195
Lei Zhang130231286950
Yang Liu1292506122380
Tao Zhang123277283866
Wei Zhang104291164923
Wei Liu102292765228
Feng Yan101104141556
Lianzhou Wang9559631438
Xiaodong Xu94112250817
Zhiguo Yuan9363328645
Rong Wang9095032172
Jun Lin8869930426
Yufeng Zheng8779731425
Taihong Wang8427925945
Mao-Sheng Cao8131424046
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

88% related

Tsinghua University
200.5K papers, 4.5M citations

88% related

Northeastern University
58.1K papers, 1.7M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022408
20212,476
20202,484
20192,402
20182,173