scispace - formally typeset
Search or ask a question
Institution

Harbin Engineering University

EducationHarbin, Heilongjiang, China
About: Harbin Engineering University is a education organization based out in Harbin, Heilongjiang, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 31149 authors who have published 27940 publications receiving 276787 citations. The organization is also known as: HEU.


Papers
More filters
Journal ArticleDOI
TL;DR: An integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma is presented, extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome.
Abstract: In cancer, both histopathologic images and genomic signatures are used for diagnosis, prognosis, and subtyping. However, combining histopathologic images with genomic data for predicting prognosis, as well as the relationships between them, has rarely been explored. In this study, we present an integrative genomics framework for constructing a prognostic model for clear cell renal cell carcinoma. We used patient data from The Cancer Genome Atlas (n = 410), extracting hundreds of cellular morphologic features from digitized whole-slide images and eigengenes from functional genomics data to predict patient outcome. The risk index generated by our model correlated strongly with survival, outperforming predictions based on considering morphologic features or eigengenes separately. The predicted risk index also effectively stratified patients in early-stage (stage I and stage II) tumors, whereas no significant survival difference was observed using staging alone. The prognostic value of our model was independent of other known clinical and molecular prognostic factors for patients with clear cell renal cell carcinoma. Overall, this workflow and the shared software code provide building blocks for applying similar approaches in other cancers. Cancer Res; 77(21); e91–100. ©2017 AACR.

99 citations

Journal ArticleDOI
TL;DR: Polypyrrole functionalized graphene (PPy-G) was synthesized via a facile but efficient polymerization-enhanced ball milling method for the first time and significantly enhanced viability, neurite outgrowth and antiaging ability of RGCs were observed after ES, suggesting possibilities for regeneration of optic nerve via ES on the suitable nanoelectrodes.
Abstract: The damage of optic nerve will cause permanent visual field loss and irreversible ocular diseases, such as glaucoma. The damage of optic nerve is mainly derived from the atrophy, apoptosis or death of retinal ganglion cells (RGCs). Though some progress has been achieved on electronic retinal implants that can electrically stimulate undamaged parts of RGCs or retina to transfer signals, stimulated self-repair/regeneration of RGCs has not been realized yet. The key challenge for development of electrically stimulated regeneration of RGCs is the selection of stimulation electrodes with a sufficient safe charge injection limit (Q(inj), i.e., electrochemical capacitance). Most traditional electrodes tend to have low Q(inj) values. Herein, we synthesized polypyrrole functionalized graphene (PPy-G) via a facile but efficient polymerization-enhanced ball milling method for the first time. This technique could not only efficiently introduce electron-acceptor nitrogen to enhance capacitance, but also remain a conductive platform-the π-π conjugated carbon plane for charge transportation. PPy-G based aligned nanofibers were subsequently fabricated for guided growth and electrical stimulation (ES) of RGCs. Significantly enhanced viability, neurite outgrowth and antiaging ability of RGCs were observed after ES, suggesting possibilities for regeneration of optic nerve via ES on the suitable nanoelectrodes.

99 citations

Journal ArticleDOI
TL;DR: This new approach resulted in a new class of supramolecular polymers consisting of a 1,3,5-trisubstituted benzene derivative, numbers of which were linearly linked by hydrogen bonds and stacked benzene derivatives.
Abstract: A novel, highly selective photocyclic aromatization (SCAT) of π-conjugated polymers from phenylacetylene having two hydroxyl groups to exclusively yield a 1,3,5-trisubstituted benzene derivative was developed, and its success was confirmed by (1)H NMR, GPC, and TOF-MS. The SCAT reaction has many unique characteristics. (1) It is a quantitative reaction: it gave only the corresponding cyclic trimer, i.e., a 1,3,5-trisubstituted benzene derivative, quantitatively (100%). No byproducts were produced under the best conditions. (2) It is an intramolecular reaction: it occurred between three adjacent monomer units in one macromolecule. (3) It is a stereospecific and topochemical or template reaction: the reactivity strongly depended on the configuration and conformation of the starting polymer substrates. (4) It is a photoreaction: high selectivity (100%) was observed only by the use of visible light irradiation, not by heating. (5) It is a solid-state reaction: high selectivity (100%) was observed only in the solid state, not in solution. In addition, (6) the resulting cyclic trimers could form a self-supporting membrane, despite their low molecular weights. This new approach resulted in a new class of supramolecular polymers consisting of a 1,3,5-trisubstituted benzene derivative, numbers of which were linearly linked by hydrogen bonds and stacked benzene derivatives. Since SCAT has such high selectivities and is useful for the preparation of a self-supporting supramolecular polymer membrane, many applications can be expected.

99 citations

Journal ArticleDOI
TL;DR: In this article, a three-dimensional vibration analysis of conical, cylindrical shells and annular plate structures with arbitrary elastic restraints is presented, and the exact solution is obtained by means of variational principle in conjunction with modified Fourier series which is composed of a standard Fourierseries and some auxiliary functions.

98 citations

Journal ArticleDOI
01 Jul 2010-Fuel
TL;DR: In this article, a single air-cathode microbial fuel cell (MFC) was constructed, carbon fiber was used as anode and continuous brewery wastewater as substrate, the MFC displayed a maximum power of 24.1

98 citations


Authors

Showing all 31363 results

NameH-indexPapersCitations
Peng Shi137137165195
Lei Zhang130231286950
Yang Liu1292506122380
Tao Zhang123277283866
Wei Zhang104291164923
Wei Liu102292765228
Feng Yan101104141556
Lianzhou Wang9559631438
Xiaodong Xu94112250817
Zhiguo Yuan9363328645
Rong Wang9095032172
Jun Lin8869930426
Yufeng Zheng8779731425
Taihong Wang8427925945
Mao-Sheng Cao8131424046
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

88% related

Tsinghua University
200.5K papers, 4.5M citations

88% related

Northeastern University
58.1K papers, 1.7M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022408
20212,476
20202,484
20192,402
20182,173