scispace - formally typeset
Search or ask a question
Institution

Harbin Engineering University

EducationHarbin, Heilongjiang, China
About: Harbin Engineering University is a education organization based out in Harbin, Heilongjiang, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 31149 authors who have published 27940 publications receiving 276787 citations. The organization is also known as: HEU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a novel anticorrosion pigment for AZ31 Mg alloy protection, molybdate pillared hydrotalcite (HT-MoO42−), was successfully fabricated via a simple one-step process.

70 citations

Journal ArticleDOI
TL;DR: Aqueous rechargeable magnesium-ion batteries with low cost of magnesium resources have a potential to meet growing requirements for electric energy storage resulted from the similar electrochemical properties to lithium as mentioned in this paper.

70 citations

Journal ArticleDOI
TL;DR: In this article, a simple sol-gel method with egg white was used to synthesize porous spinel ferrites, which exhibit porous morphologies and large BET surface area (S(BET)).

70 citations

Journal ArticleDOI
TL;DR: In this paper, a hierarchical Na7V4(P2O7)4(PO4)/C nanorod-graphene composite is proposed to provide bicontinuous electron and ion pathways.
Abstract: Mixed polyanion materials with a 3D framework for battery electrodes have been attracting significant attention recently in view of the requirements to further improve energy storage and power densities. Herein, we present a design of a hierarchical Na7V4(P2O7)4(PO4)/C nanorod–graphene composite as sodium- and lithium-storage cathode materials. The hierarchical structure is composed of a 1D rectangular Na7V4(P2O7)4(PO4)/C nanorod, which is coated by in situ residual carbon and wrapped by a reduced graphene-oxide sheet. The open network of graphene and the surface carbon coating of the Na7V4(P2O7)4(PO4)/C nanorod provide bicontinuous electron and ion pathways, providing a three-dimensional conductive network for efficient electron and ion transfer. The flexible electrode built from the hierarchical composite free of binder or conductive additive exhibits improved electron conductivity and higher sodium/lithium ion migration coefficients than the pristine Na7V4(P2O7)4(PO4)/C nanorod. It approaches the initial reversible electrochemical capacities of 91.4 and 91.8 mA h g−1 with high discharge potentials over 3.8 V (vs. Na/Na+ or Li/Li+) and good cycling properties with capacity retentions of 95% and 83% after 200 cycles at a 1 C rate in sodium and lithium intercalation systems, respectively. Even at 10 C, it still delivers 87.4% (for sodium) and 78.2% (for lithium) of the capacity and high cycling stability. Taking into consideration the compatibilities of both sodium/lithium ions and their superior electrochemical characteristics, the bicontinuous hierarchical composite is considered to be a promising high-rate capability electrode material for advanced energy storage applications.

70 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to fabricate flexible graphene papers using chemical vapor deposition (CVD) derived graphene was presented, where expanded vermiculite was used as a layered template in the CVD process to produce bulk materials containing graphene sheets of the order of hundreds of microns at a gram scale.
Abstract: We present a novel approach to fabricate flexible graphene papers using chemical vapor deposition (CVD) derived graphene. Expanded vermiculite was used as a layered template in the CVD process to produce bulk materials containing graphene sheets of the order of hundreds of microns at a gram scale. Meshes or carbon nanotubes can be introduced into the graphene sheets by template pretreating. Owing to the large sheet size, the as-obtained graphene sheets were easily fabricated into flexible graphene papers with low surface density and good conductivity, which exhibited greatly enhanced reversible capacity (1350 mA h g−1 at 50 mA g−1) and cycling performance as anodes for lithium rechargeable batteries as compared to the graphene papers fabricated using reduced graphene oxide.

70 citations


Authors

Showing all 31363 results

NameH-indexPapersCitations
Peng Shi137137165195
Lei Zhang130231286950
Yang Liu1292506122380
Tao Zhang123277283866
Wei Zhang104291164923
Wei Liu102292765228
Feng Yan101104141556
Lianzhou Wang9559631438
Xiaodong Xu94112250817
Zhiguo Yuan9363328645
Rong Wang9095032172
Jun Lin8869930426
Yufeng Zheng8779731425
Taihong Wang8427925945
Mao-Sheng Cao8131424046
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

88% related

Tsinghua University
200.5K papers, 4.5M citations

88% related

Northeastern University
58.1K papers, 1.7M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022408
20212,476
20202,484
20192,402
20182,173