scispace - formally typeset
Search or ask a question
Institution

Harbin Engineering University

EducationHarbin, Heilongjiang, China
About: Harbin Engineering University is a education organization based out in Harbin, Heilongjiang, China. It is known for research contribution in the topics: Control theory & Computer science. The organization has 31149 authors who have published 27940 publications receiving 276787 citations. The organization is also known as: HEU.


Papers
More filters
Journal ArticleDOI
Wanlu Yang1, Zan Gao1, Jun Wang1, Jing Ma1, Milin Zhang1, Lianhe Liu1 
TL;DR: The LDH/CNT/GNS hybrid exhibited excellent electrochemical performance, including ultrahigh specific capacitance, excellent rate capability, and long-term cycling performance, which could be a promising energy storage/conversion material for supercapacitor application.
Abstract: A Ni–Al layered double hydroxide (LDH), mutil-wall carbon nanotube (CNT), and reduced graphene oxide sheet (GNS) ternary nanocomposite electrode material has been developed by a facile one-step ethanol solvothermal method. The obtained LDH/CNT/GNS composite displayed a three-dimensional (3D) architecture with flowerlike Ni–Al LDH/CNT nanocrystallites gradually self-assembled on GNS nanosheets. GNS was used as building blocks to construct 3D nanostructure, and the LDH/CNT nanoflowers in turn separated the two-dimensional (2D) GNS sheets, which preserved the high surface area of GNSs. Furthermore, the generated porous networks with a narrow pore size distribution in the LDH/CNT/GNS composite were also demonstrated by the N2 adsorption/desorption experiment. Such morphology would be favorable to improve the mass transfer and electrochemical action of the electrode. As supercapacitor electrode material, the LDH/CNT/GNS hybrid exhibited excellent electrochemical performance, including ultrahigh specific capaci...

233 citations

Journal ArticleDOI
TL;DR: A new adaptive sliding mode controller based on system output is presented to guarantee that the closed-loop system is uniformly ultimately bounded.
Abstract: In this paper, a novel adaptive sliding mode controller is designed for Takagi–Sugeno (T–S) fuzzy systems with actuator saturation and system uncertainty. By the delta operator approach, the discrete-time nonlinear system is described by a T–S fuzzy model with unmeasurable state. By singular value decomposition of system input matrix, a reduced-order system is obtained for the design of sliding mode surface. A new adaptive sliding mode controller based on system output is presented to guarantee that the closed-loop system is uniformly ultimately bounded. Four examples are provided to illustrate the effectiveness and applicability of the proposed control scheme.

231 citations

Journal ArticleDOI
TL;DR: Density functional theory calculations indicate that the in situ reconstructed Sn/SnO x interface facilitates formic acid production by optimizing the binding of the reaction intermediate HCOO* while promotes Faradaic efficiency of C 1 products by suppressing the competitive hydrogen evolution reaction, resulting in high FaradaIC efficiency, current density and stability of CO 2 RR at low overpotentials.
Abstract: The electrochemical CO2 reduction reaction (CO2 RR) to give C1 (formate and CO) products is one of the most techno-economically achievable strategies for alleviating CO2 emissions. Now, it is demonstrated that the SnOx shell in Sn2.7 Cu catalyst with a hierarchical Sn-Cu core can be reconstructed in situ under cathodic potentials of CO2 RR. The resulting Sn2.7 Cu catalyst achieves a high current density of 406.7±14.4 mA cm-2 with C1 Faradaic efficiency of 98.0±0.9 % at -0.70 V vs. RHE, and remains stable at 243.1±19.2 mA cm-2 with a C1 Faradaic efficiency of 99.0±0.5 % for 40 h at -0.55 V vs. RHE. DFT calculations indicate that the reconstructed Sn/SnOx interface facilitates formic acid production by optimizing binding of the reaction intermediate HCOO* while promotes Faradaic efficiency of C1 products by suppressing the competitive hydrogen evolution reaction, resulting in high Faradaic efficiency, current density, and stability of CO2 RR at low overpotentials.

229 citations

Journal ArticleDOI
TL;DR: In this review, the progress of 808 nm-excited LnNPs is reported, including their i) luminescence mechanism, ii) Luminescence enhancement, iii) color tuning, iv) diagnostic and v) therapeutic applications.
Abstract: 808 nm-light-excited lanthanide (Ln3+ )-doped nanoparticles (LnNPs) hold great promise for a wide range of applications, including bioimaging diagnosis and anticancer therapy. This is due to their unique properties, including their minimized overheating effect, improved penetration depth, relatively high quantum yields, and other common features of LnNPs. In this review, the progress of 808 nm-excited LnNPs is reported, including their i) luminescence mechanism, ii) luminescence enhancement, iii) color tuning, iv) diagnostic and v) therapeutic applications. Finally, the future outlook and challenges of 808 nm-excited LnNPs are presented.

228 citations

Journal ArticleDOI
TL;DR: A review of the important printing methods, including high precision traditional printing methods as well as recently emerging techniques, can be found in this article, where the authors also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing.
Abstract: Printing technologies have undergone signficant development because they are an enabler in science and engineering research; they also have significant practical applications in manufacturing. Micro- and nano-printing techniques have found a number of applications in electronics, biotechnology, and material synthesis/patterning. In this review, we look at the important printing methods, including high precision traditional printing methods as well as recently emerging techniques. We also discuss the materials that are printable by these technologies, the challenges for future development, and the applications of micro- and nano-printing.

222 citations


Authors

Showing all 31363 results

NameH-indexPapersCitations
Peng Shi137137165195
Lei Zhang130231286950
Yang Liu1292506122380
Tao Zhang123277283866
Wei Zhang104291164923
Wei Liu102292765228
Feng Yan101104141556
Lianzhou Wang9559631438
Xiaodong Xu94112250817
Zhiguo Yuan9363328645
Rong Wang9095032172
Jun Lin8869930426
Yufeng Zheng8779731425
Taihong Wang8427925945
Mao-Sheng Cao8131424046
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

88% related

Tsinghua University
200.5K papers, 4.5M citations

88% related

Northeastern University
58.1K papers, 1.7M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022408
20212,476
20202,484
20192,402
20182,173