scispace - formally typeset
Search or ask a question
Institution

Harbin Engineering University

EducationHarbin, Heilongjiang, China
About: Harbin Engineering University is a education organization based out in Harbin, Heilongjiang, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 31149 authors who have published 27940 publications receiving 276787 citations. The organization is also known as: HEU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a novel stir casting assisted by ultrasonic treatment processing was studied, where a short semi-solid stir time was needed for addition and pre-dispersion of the particles in the novel processing.

152 citations

Journal ArticleDOI
TL;DR: This work synthesized anatase N-doped TiO2 nanobelts with a surface heterojunction of coexposed (101) and (001) facets that realized the charge pairs' spatial separation and showed higher photocatalytic activity under a visible-light ray.
Abstract: To narrow the band gap (3.2 eV) of TiO2 and extend its practical applicability under sunlight, the doping with nonmetal elements has been used to tune TiO2 electronic structure. However, the doping also brings new recombination centers among the photoinduced charge carriers, which results in a quantum efficiency loss accordingly. It has been proved that the {101} facets of anatase TiO2 are beneficial to generating and transmitting more reductive electrons to promote the H2-evolution in the photoreduction reaction, and the {001} facets exhibit a higher photoreactivity to accelerate the reaction involved of photogenerated hole. Thus, it was considered by us that using the surface heterojunction composed of both {001} and {101} facets may depress the disadvantage of N doping. Fortunately, we successfully synthesized anatase N-doped TiO2 nanobelts with a surface heterojunction of coexposed (101) and (001) facets. As expected, it realized the charge pairs’ spatial separation and showed higher photocatalytic ac...

152 citations

Journal ArticleDOI
TL;DR: It is proposed that Ni( 2+) transferred electron from the surface to induce ozone decomposition in the catalytic process, the oxidation of lattice oxygen played an essential role in enhancing the reversion of Ni(3+) to Ni(2+), and the promotion of (*)OH reaction was a combined balance action of Ni (2+)/Ni( 3+) and O(2-)/O(2).

152 citations

Journal ArticleDOI
TL;DR: The investigation validates that CSI is a promising method to bridge the gap between signal recognition and DL, and develops a framework to transform complex-valued signal waveforms into images with statistical significance, termed contour stellar image (CSI), which can convey deep level statistical information from the raw wireless signal waves while being represented in an image data format.
Abstract: The rapid development of communication systems poses unprecedented challenges, e.g., handling exploding wireless signals in a real-time and fine-grained manner. Recent advances in data-driven machine learning algorithms, especially deep learning (DL), show great potential to address the challenges. However, waveforms in the physical layer may not be suitable for the prevalent classical DL models, such as convolution neural network (CNN) and recurrent neural network (RNN), which mainly accept formats of images, time series, and text data in the application layer. Therefore, it is of considerable interest to bridge the gap between signal waveforms to DL amenable data formats. In this article, we develop a framework to transform complex-valued signal waveforms into images with statistical significance, termed contour stellar image (CSI), which can convey deep level statistical information from the raw wireless signal waveforms while being represented in an image data format. In this article, we explore several potential application scenarios and present effective CSI-based solutions to address the signal recognition challenges. Our investigation validates that CSI is a promising method to bridge the gap between signal recognition and DL.

152 citations

Journal ArticleDOI
TL;DR: In this paper, a boron (B) and nitrogen (N) co-doped porous carbon tube bundle (B/N-PCTB) electrode materials which are directly derived from the biomass of dandelion fluff was designed.
Abstract: In our work, we successfully design boron (B) and nitrogen (N) co-doped porous carbon tube bundle (B/N-PCTB) electrode materials which are directly derived from the biomass of dandelion fluff. The low-tortuosity, and open and porous structures contribute to electron transport along the tube wall and unimpeded ion diffusion inside the carbon tubes. The incorporation of heteroatoms into PCTBs can bring extra pseudocapacitance and double layer capacitance to enhance the overall capacitance. Benefiting from the hollow and open microstructure and heteroatom doping, the optimized B/N-PCTB electrode (active materials: 2.6 mg cm−2) possesses an impressive specific capacitance of 355 F g−1 at 1 A g−1. Even with an ultrahigh loading mass of 40 mg cm−2, the electrode still has a relatively high specific capacity of 216 F g−1 at 1 A g−1. The assembled symmetric cell with an active material loading of 80 mg cm−2 (cathode: 40 mg cm−2; anode: 40 mg cm−2) shows a superior volumetric energy density of 12.15 W h L−1 at the power density of 699.84 W L−1. The facile yet high-performance porous carbon tube bundle is a promising material which can be applied in many other fields such as lithium ion batteries, hydrogen evolution reaction, and heavy metal ion adsorption.

152 citations


Authors

Showing all 31363 results

NameH-indexPapersCitations
Peng Shi137137165195
Lei Zhang130231286950
Yang Liu1292506122380
Tao Zhang123277283866
Wei Zhang104291164923
Wei Liu102292765228
Feng Yan101104141556
Lianzhou Wang9559631438
Xiaodong Xu94112250817
Zhiguo Yuan9363328645
Rong Wang9095032172
Jun Lin8869930426
Yufeng Zheng8779731425
Taihong Wang8427925945
Mao-Sheng Cao8131424046
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

88% related

Tsinghua University
200.5K papers, 4.5M citations

88% related

Northeastern University
58.1K papers, 1.7M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022408
20212,476
20202,484
20192,402
20182,173