scispace - formally typeset
Search or ask a question
Institution

Harbin Engineering University

EducationHarbin, Heilongjiang, China
About: Harbin Engineering University is a education organization based out in Harbin, Heilongjiang, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 31149 authors who have published 27940 publications receiving 276787 citations. The organization is also known as: HEU.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed dual-band eight-antenna array for multiple-input and multiple-output (MIMO) applications in 5G mobile terminals can maintain acceptable radiation and MIMO performance in the presence of specific anthropomorphic mannequin head and human hands.
Abstract: This paper proposes a dual-band eight-antenna array for multiple-input and multiple-output (MIMO) applications in 5G mobile terminals. The designed MIMO antenna array comprises eight L-shaped slot antennas based on stepped impedance resonators (SIRs). The required dual-resonance can be obtained by adjusting the impedance ratio of the SIR, and good impedance matching can be ensured for each antenna element by tuning the position of the microstrip feed line. The experimental results show that a measured return loss of higher than 10 dB and a measured inter-element isolation of greater than 11.2 dB have been obtained for each antenna element with a simulated total efficiency of larger than 51% across the long term evolution (LTE) band 42 (3400-3600 MHz) and LTE band 46 (5150-5925 MHz). In addition, the measured envelope correlation coefficient (ECC) is lower than 0.1 between arbitrary two antenna elements, and the proposed MIMO antenna array realizes a simulated channel capacity of higher than 36.9 bps/Hz within both operation bands. Furthermore, the MIMO antenna array can maintain acceptable radiation and MIMO performance in the presence of specific anthropomorphic mannequin (SAM) head and human hands.

127 citations

Journal ArticleDOI
TL;DR: In this paper, two members of the family of orthosilicate, Li 2 FeSiO4 and Li 2 MnSiO 4, are prepared by a citric acid assisted sol-gel method.

127 citations

Journal ArticleDOI
TL;DR: In this paper, the authors systematically introduce reinforcement strategies, from their basic working principles, reinforcement mechanisms to their representative clinical applications, including how to integrate these emerging Fenton reinforcement strategies for accelerating the development of multimodal anticancer therapy, as well as the synergistic mechanisms of ECDT and other treatment methods.
Abstract: Chemodynamic therapy (CDT) uses the tumor microenvironment-assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Recent years have witnessed the impressive development of various strategies to increase the efficiency of intratumoral Fenton reaction. The introduction of these reinforcement strategies can dramatically improve the treatment efficiency of CDT and further promote the development of enhanced CDT (ECDT)-based multimodal anticancer treatments. In this review, the authors systematically introduce these reinforcement strategies, from their basic working principles, reinforcement mechanisms to their representative clinical applications. Then, ECDT-based multimodal anticancer therapy is discussed, including how to integrate these emerging Fenton reinforcement strategies for accelerating the development of multimodal anticancer therapy, as well as the synergistic mechanisms of ECDT and other treatment methods. Eventually, future direction and challenges of ECDT and ECDT-based multimodal synergistic therapies are elaborated, highlighting the key scientific problems and unsolved technical bottlenecks to facilitate clinical translation.

127 citations

Journal ArticleDOI
TL;DR: A new descriptor SMO method is presented and it is shown that, if the quantizer density is larger than $\sqrt{2}-1$, the designed observer can compensate quantization errors completely completely, and the fault vector can be reconstructed despite of signal quantization.
Abstract: This paper addresses the actuator fault estimation sliding-mode observer (SMO) design problem of linear continuous-time systems over digital communication channels. This problem frequently occurred in a network environment where data has to be quantized before being transmitted via digital communication channels. Traditional observers (linear Luenberger observer, Walcott–ZaK SMO) are not effective to solve this design issue since the effects of signal quantization will degrade estimation performances evidently. In this paper, a new descriptor SMO method is presented to overcome this difficult problem. It is shown that, if the quantizer density is larger than $\sqrt{2}-1$ , the designed observer can compensate quantization errors completely, and the fault vector can be reconstructed despite of signal quantization. Finally, a simulation example with the F-404 aircraft engine model is proposed to demonstrate the effectiveness of the proposed robust digital observer design approach.

127 citations

Journal ArticleDOI
TL;DR: In this paper, it has been successfully demonstrated that the fuel cells using the ceria-carbonate composite as electrolytes have achieved excellent performances of 200-1150 W/cm(2) at 300-600 degrees C.

127 citations


Authors

Showing all 31363 results

NameH-indexPapersCitations
Peng Shi137137165195
Lei Zhang130231286950
Yang Liu1292506122380
Tao Zhang123277283866
Wei Zhang104291164923
Wei Liu102292765228
Feng Yan101104141556
Lianzhou Wang9559631438
Xiaodong Xu94112250817
Zhiguo Yuan9363328645
Rong Wang9095032172
Jun Lin8869930426
Yufeng Zheng8779731425
Taihong Wang8427925945
Mao-Sheng Cao8131424046
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

88% related

Tsinghua University
200.5K papers, 4.5M citations

88% related

Northeastern University
58.1K papers, 1.7M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023107
2022408
20212,476
20202,484
20192,402
20182,173