scispace - formally typeset
Search or ask a question
Institution

Harbin Institute of Technology

EducationHarbin, China
About: Harbin Institute of Technology is a education organization based out in Harbin, China. It is known for research contribution in the topics: Microstructure & Control theory. The organization has 88259 authors who have published 109297 publications receiving 1603393 citations. The organization is also known as: HIT.


Papers
More filters
Journal ArticleDOI
TL;DR: This review aims to critically discuss the feasibility of microalgae-based wastewater treatment, including the strategies for strain selection, the effect of wastewater types, photobioreactor design, economic feasibility assessment, and other key issues that influence the treatment performance.

325 citations

Journal ArticleDOI
TL;DR: It is demonstrated that introducing pores smaller than the grain size further reduces constraints and markedly increases MFIS to 2.0-8.7%.
Abstract: The magnetic shape-memory alloy Ni-Mn-Ga shows, in monocrystalline form, a reversible magnetic-field-induced strain (MFIS) up to 10%. This strain, which is produced by twin boundaries moving solely by internal stresses generated by magnetic anisotropy energy, can be used in actuators, sensors and energy-harvesting devices. Compared with monocrystalline Ni-Mn-Ga, fine-grained Ni-Mn-Ga is much easier to process but shows near-zero MFIS because twin boundary motion is inhibited by constraints imposed by grain boundaries. Recently, we showed that partial removal of these constraints, by introducing pores with sizes similar to grains, resulted in MFIS values of 0.12% in polycrystalline Ni-Mn-Ga foams, close to those of the best commercial magnetostrictive materials. Here, we demonstrate that introducing pores smaller than the grain size further reduces constraints and markedly increases MFIS to 2.0-8.7%. These strains, which remain stable over >200,000 cycles, are much larger than those of any polycrystalline, active material.

324 citations

Journal ArticleDOI
TL;DR: This article is concerned with the recursive finite-horizon filtering problem for a class of nonlinear time-varying systems subject to multiplicative noises, missing measurements and quantisation effects, and the design of a recursive filter such that an upper bound for the filtering error covariance is guaranteed and such anupper bound is subsequently minimised by properly designing the filter parameters at each sampling instant.
Abstract: This article is concerned with the recursive finite-horizon filtering problem for a class of nonlinear time-varying systems subject to multiplicative noises, missing measurements and quantisation effects. The missing measurements are modelled by a series of mutually independent random variables obeying Bernoulli distributions with possibly different occurrence probabilities. The quantisation phenomenon is described by using the logarithmic function and the multiplicative noises are considered to account for the stochastic disturbances on the system states. Attention is focused on the design of a recursive filter such that, for all multiplicative noises, missing measurements as well as quantisation effects, an upper bound for the filtering error covariance is guaranteed and such an upper bound is subsequently minimised by properly designing the filter parameters at each sampling instant. The desired filter parameters are obtained by solving two Riccati-like difference equations that are of a recursive form...

324 citations

Journal ArticleDOI
12 Jul 2013-Science
TL;DR: The crystal structure of autoinhibited NLR family member NLRC4 is reported, which reveals the domains that are critical for interaction with adenosine diphosphate to keepNLRC4 in its inactive state and the domain that mediate oligomerization of the protein upon activation.
Abstract: Nucleotide-binding and oligomerization domain-like receptor (NLR) proteins oligomerize into multiprotein complexes termed inflammasomes when activated. Their autoinhibition mechanism remains poorly defined. Here, we report the crystal structure of mouse NLRC4 in a closed form. The adenosine diphosphate-mediated interaction between the central nucleotide-binding domain (NBD) and the winged-helix domain (WHD) was critical for stabilizing the closed conformation of NLRC4. The helical domain HD2 repressively contacted a conserved and functionally important α-helix of the NBD. The C-terminal leucine-rich repeat (LRR) domain is positioned to sterically occlude one side of the NBD domain and consequently sequester NLRC4 in a monomeric state. Disruption of ADP-mediated NBD-WHD or NBD-HD2/NBD-LRR interactions resulted in constitutive activation of NLRC4. Together, our data reveal the NBD-organized cooperative autoinhibition mechanism of NLRC4 and provide insight into its activation.

323 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the latest research trend in this discipline by analyzing published construction management research in 10 leading journals during the period from 2000 to 2013 in terms of the annual number of MPC papers, contributions of institutions, adopted data collection and processing methods, and research interest.

323 citations


Authors

Showing all 89023 results

NameH-indexPapersCitations
Jiaguo Yu178730113300
Lei Jiang1702244135205
Gang Chen1673372149819
Xiang Zhang1541733117576
Hui-Ming Cheng147880111921
Yi Yang143245692268
Bruce E. Logan14059177351
Bin Liu138218187085
Peng Shi137137165195
Hui Li1352982105903
Lei Zhang135224099365
Jie Liu131153168891
Lei Zhang130231286950
Zhen Li127171271351
Kurunthachalam Kannan12682059886
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

95% related

Tianjin University
79.9K papers, 1.2M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023383
20221,896
202110,085
20209,817
20199,659
20188,215