scispace - formally typeset
Search or ask a question
Institution

Harbin Institute of Technology

EducationHarbin, China
About: Harbin Institute of Technology is a education organization based out in Harbin, China. It is known for research contribution in the topics: Microstructure & Control theory. The organization has 88259 authors who have published 109297 publications receiving 1603393 citations. The organization is also known as: HIT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a combined heat and power (CHP) based district heating (DH) system with RES and energy storage system (ESS) is studied and a modeling and optimization method is developed for planning and operating such CHP-DH systems.

318 citations

Journal ArticleDOI
TL;DR: A novel multifunctional theranostic agent based on gold-nanoshelled microcapsules (GNS-MCs) is developed by electrostatic adsorption of gold nanoparticles as seeds onto the polymeric microcapsule surfaces, followed by the formation of gold nanoshells by using a surface seeding method.
Abstract: The term theranostics, which is derived from “diagnostics” and “therapy”, refers to a treatment strategy that combines a diagnostic test and a specific therapy based on the test results. This integration of diagnostic imaging capability with therapy is critical in addressing the challenges of cancer heterogeneity and adaptation. Therefore, theranostic agents have received a great deal of recent research interest in cancer diagnosis and treatment. Among all the diagnostic imaging techniques, ultrasound imaging has a unique advantage because of its features of real-time, low-cost, high safety, and ease of incorporation into portable devices. With the use of ultrasound contrast agents (UCAs), the resolution and sensitivity of clinical ultrasound imaging have been greatly improved. Microcapsules composed of poly(lactic acid) (PLA), which has outstanding biocompatibility and biodegradability, show good ultrasound contrast-enhancing capabilities and other advantages: they have good mechanical strength and are thus stable, they can load either hydrophilic or hydrophobic species or both, and they are surface-charged and have functional groups on the surface so that they could be easily modified to introduce further practical features. Gold nanostructures exhibit good biocompatibility as well as excellent optical and electronic properties, thus allowing use in biological and medical applications. Gold nanoshells have a spherical dielectric core particle surrounded by a thin nanoscale gold shell. By controlling the thickness of the gold shell and the diameter of the core, the plasmon resonance and the resulting optical absorption of gold nanoshells can be tuned to the near-infrared (NIR) region, where the absorption of human tissues is minimal and penetration is optimal. On the other hand, the strong optical absorption of nanoshells can rapidly increase the local temperature under NIR irradiation. Therefore, the gold nanoshells can be used as photoabsorbers for remote NIR photothermal ablation therapy. Lasers and photoabsorbers such as gold nanostructures are used to carry out cancer treatment in photothermal therapy. However, the location and size of cancers must be identified before therapy, the treatment procedure needs to be monitored in real time during therapy, and the effectiveness has to be assessed after therapy. Contrast-enhanced ultrasound imaging could be the technique of choice to address these tasks. Therefore, the development of goldnanoshell-based UCAs could operate as a multifunctional theranostic agent for imaging-guided photothermal therapy. We have developed a novel multifunctional theranostic agent based on gold-nanoshelled microcapsules (GNS-MCs) by electrostatic adsorption of gold nanoparticles as seeds onto the polymeric microcapsule surfaces, followed by the formation of gold nanoshells by using a surface seeding method (Figure 1). The polymeric microcapsules were generated from PLA and polyvinyl alcohol (PVA) materials by employing the water-in-oil-in-water (W/O/W) double-emulsion method, and were negatively charged with a zeta potential of about 25 mV. Upon exposure to positively charged poly(allyl-

318 citations

Journal ArticleDOI
TL;DR: The preparation of COS and their physicochemical properties, and modification, which aids understanding of their biological activities are described, to provide comprehensive insights into research on the molecular level.

318 citations

Journal ArticleDOI
25 Jul 2013-ACS Nano
TL;DR: The present approach is extendable to fabricate a variety of ultralow-density materials desirable for absorptive materials, electrode materials, catalyst supports, etc.
Abstract: Ultralow-density (<10 mg cm–3) materials have many important technological applications; however, most of them were fabricated using either expensive materials or complicated procedures. In this study, ultralight magnetic Fe2O3/C, Co/C, and Ni/C foams (with a density <5 mg cm–3) were fabricated on the centimeter scale by pyrolyzing commercial polyurethane sponge grafted with polyelectrolyte layers based on the corresponding metal acrylate at 400 °C. The ultralight foams consisted of 3D interconnected hollow tubes that have a diameter of micrometer and nanoscale wall thickness, forming hierarchical structures from macroscopic to nanometer length scales. More interesting was that the wall thickness and morphology of the microtubes could be tuned by controlling the concentrations of acrylic acid and metallic cations. After modification with low-surface-energy polysiloxane, the ultralight foams showed superhydrophobicity and superoleophilicity, which quickly and selectively absorbed a variety of oils from a p...

317 citations

Journal ArticleDOI
01 May 2016
TL;DR: A series of recent advances in real-time WSANs for industrial control systems are reviewed, with a focus on cyber-physical codesign of wireless control systems that integrate wireless and control designs.
Abstract: With recent adoption of wireless sensor-actuator networks (WSANs) in industrial automation, industrial wireless control systems have emerged as a frontier of cyber-physical systems. Despite their success in industrial monitoring applications, existing WSAN technologies face significant challenges in supporting control systems due to their lack of real-time performance and dynamic wireless conditions in industrial plants. This article reviews a series of recent advances in real-time WSANs for industrial control systems: 1) real-time scheduling algorithms and analyses for WSANs; 2) implementation and experimentation of industrial WSAN protocols; 3) cyber-physical codesign of wireless control systems that integrate wireless and control designs; and 4) a wireless cyber-physical simulator for codesign and evaluation of wireless control systems. This article concludes by highlighting research directions in industrial cyber-physical systems.

317 citations


Authors

Showing all 89023 results

NameH-indexPapersCitations
Jiaguo Yu178730113300
Lei Jiang1702244135205
Gang Chen1673372149819
Xiang Zhang1541733117576
Hui-Ming Cheng147880111921
Yi Yang143245692268
Bruce E. Logan14059177351
Bin Liu138218187085
Peng Shi137137165195
Hui Li1352982105903
Lei Zhang135224099365
Jie Liu131153168891
Lei Zhang130231286950
Zhen Li127171271351
Kurunthachalam Kannan12682059886
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

95% related

Tianjin University
79.9K papers, 1.2M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

University of Science and Technology of China
101K papers, 2.4M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023383
20221,895
202110,083
20209,817
20199,659
20188,215