scispace - formally typeset
Search or ask a question
Institution

Helmholtz-Zentrum Dresden-Rossendorf

FacilityDresden, Germany
About: Helmholtz-Zentrum Dresden-Rossendorf is a facility organization based out in Dresden, Germany. It is known for research contribution in the topics: Magnetization & Laser. The organization has 2792 authors who have published 6559 publications receiving 104262 citations. The organization is also known as: Research Center Dresden-Rossendorf.


Papers
More filters
Journal ArticleDOI
TL;DR: A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software and could be excellently reproduced.
Abstract: Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174 radiomic features. Materials and Methods Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features. Results Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features (1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features (90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI). Conclusion A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Kuhl and Truhn in this issue.

1,563 citations

Journal ArticleDOI
TL;DR: The observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO(3) shows that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall.
Abstract: Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO3. The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features. Domain walls may be important in future electronic devices, given their small size as well as the fact that their location can be controlled. In the case of insulating multiferroic oxides, domain walls are now discovered to be electrically conductive, suggesting their possible use in logic and memory applications.

1,208 citations

Journal ArticleDOI
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as discussed by the authors provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

1,068 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the magneto-transport properties of NbP, a material the band structure of which has been predicted to combine the hallmarks of a Weyl semimetal10,11 with those of a normal semiimetal.
Abstract: Weyl semimetals are predicted to exhibit a host of unusual transport properties. NbP, a system predicted to share characteristics of both normal and Weyl semimetals, is now shown to have a very large, non-saturating magnetoresistance. Recent experiments have revealed spectacular transport properties in semimetals, such as the large, non-saturating magnetoresistance exhibited by WTe2 (ref. 1). Topological semimetals with massless relativistic electrons have also been predicted2 as three-dimensional analogues of graphene3. These systems are known as Weyl semimetals, and are predicted to have a range of exotic transport properties and surface states4,5,6,7, distinct from those of topological insulators8,9. Here we examine the magneto-transport properties of NbP, a material the band structure of which has been predicted to combine the hallmarks of a Weyl semimetal10,11 with those of a normal semimetal. We observe an extremely large magnetoresistance of 850,000% at 1.85 K (250% at room temperature) in a magnetic field of up to 9 T, without any signs of saturation, and an ultrahigh carrier mobility of 5 × 106 cm2 V−1 s−1 that accompanied by strong Shubnikov–de Haas (SdH) oscillations. NbP therefore presents a unique example of a material combining topological and conventional electronic phases, with intriguing physical properties resulting from their interplay.

954 citations

Journal ArticleDOI
TL;DR: A brief description of cancer pathology and the characteristics that are important for tumor‐targeted NM design are provided, followed by an overview of the different types of NMs explored to date, covering synthetic aspects and approaches explored.
Abstract: The application of nanomaterials (NMs) in biomedicine is increasing rapidly and offers excellent prospects for the development of new non-invasive strategies for the diagnosis and treatment of cancer. In this review, we provide a brief description of cancer pathology and the characteristics that are important for tumor-targeted NM design, followed by an overview of the different types of NMs explored to date, covering synthetic aspects and approaches explored for their application in unimodal and multimodal imaging, diagnosis and therapy. Significant synthetic advances now allow for the preparation of NMs with highly controlled geometry, surface charge, physicochemical properties, and the decoration of their surfaces with polymers and bioactive molecules in order to improve biocompatibility and to achieve active targeting. This is stimulating the development of a diverse range of nanometer-sized objects that can recognize cancer tissue, enabling visualization of tumors, delivery of anti-cancer drugs and/or the destruction of tumors by different therapeutic techniques.

842 citations


Authors

Showing all 2814 results

NameH-indexPapersCitations
Jay Hauser1552145132683
Zheng Wang110121055478
B. Lutz10943145365
Oliver G. Schmidt100108339988
Thomas Heine8442324210
Martin Bornhäuser7857723527
Howard D. Thames7330719619
Arkady V. Krasheninnikov7127323681
Per Persson6940514961
Jürgen Weitz6839918063
Anja Feldmann6734017422
Yu Liu66126220577
Michael Bachmann6336014388
Hao Li62104517772
Cyril H. Benes6117618052
Network Information
Related Institutions (5)
Oak Ridge National Laboratory
73.7K papers, 2.6M citations

92% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

92% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

University of Erlangen-Nuremberg
85.6K papers, 2.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202256
2021823
2020880
2019797
2018651