scispace - formally typeset
Search or ask a question
Institution

Helsinki Institute for Information Technology

FacilityEspoo, Finland
About: Helsinki Institute for Information Technology is a facility organization based out in Espoo, Finland. It is known for research contribution in the topics: Population & Bayesian network. The organization has 630 authors who have published 1962 publications receiving 63426 citations.


Papers
More filters
Journal ArticleDOI
24 Aug 2011-PLOS ONE
TL;DR: It is found that fenofibrate leads to complex HDL compositional changes including increased apoA-II, diminishment of lysophosphatidylcholines and increase of sphingomyelins and apo-II is more deeply buried in the lipid matrix than apOA-I.
Abstract: In a recent FIELD study the fenofibrate therapy surprisingly failed to achieve significant benefit over placebo in the primary endpoint of coronary heart disease events. Increased levels of atherogenic homocysteine were observed in some patients assigned to fenofibrate therapy but the molecular mechanisms behind this are poorly understood. Herein we investigated HDL lipidomic profiles associated with fenofibrate treatment and the drug-induced Hcy levels in the FIELD substudy. We found that fenofibrate leads to complex HDL compositional changes including increased apoA-II, diminishment of lysophosphatidylcholines and increase of sphingomyelins. Ethanolamine plasmalogens were diminished only in a subgroup of fenofibrate-treated patients with elevated homocysteine levels. Finally we performed molecular dynamics simulations to qualitatively reconstitute HDL particles in silico. We found that increased number of apoA-II excludes neutral lipids from HDL surface and apoA-II is more deeply buried in the lipid matrix than apoA-I. In conclusion, a detailed molecular characterization of HDL may provide surrogates for predictors of drug response and thus help identify the patients who might benefit from fenofibrate treatment.

50 citations

Book ChapterDOI
18 Apr 2011
TL;DR: Two new search space pruning techniques, conflict propagation based on recorded failure information and recursion over nonuniformly joined components, are presented and Experimental results show that the techniques can result in substantial decrease in both search space sizes and run times.
Abstract: The individualize and refine approach for computing automorphism groups and canonical forms of graphs is studied. Two new search space pruning techniques, conflict propagation based on recorded failure information and recursion over nonuniformly joined components, are presented. Experimental results show that the techniques can result in substantial decrease in both search space sizes and run times.

50 citations

Book ChapterDOI
24 Sep 2014
TL;DR: This work designs a constraint propagator for the acyclicity constraint and shows how it can be incorporated in off-the-shelf SAT solvers, and proposes an embedding of directed graphs in SAT, with arcs labelled with propositional variables, and an extended SAT problem in which all clauses have to be satisfied.
Abstract: Acyclicity is a recurring property of solutions to many important combinatorial problems. In this work we study embeddings of specialized acyclicity constraints in the satisfiability problem of the classical propositional logic (SAT). We propose an embedding of directed graphs in SAT, with arcs labelled with propositional variables, and an extended SAT problem in which all clauses have to be satisfied and the subgraph consisting of arcs labelled true is acyclic. We devise a constraint propagator for the acyclicity constraint and show how it can be incorporated in off-the-shelf SAT solvers. We show that all existing encodings of acyclicity constraints in SAT are either prohibitively large or do not sanction all inferences made by the constraint propagator. Our experiments demonstrate the advantages of our solver over other approaches for handling acyclicity.

49 citations

Proceedings ArticleDOI
07 Apr 2015
TL;DR: In this paper, the authors describe a data structure that stores a string in space similar to that of its Lempel-Ziv encoding and efficiently supports access, rank and select queries.
Abstract: We describe a data structure that stores a strings in space similar to that of its Lempel-Ziv encoding and efficiently supports access, rank and select queries. These queries are fundamental for implementing succinct and compressed data structures, such as compressed trees and graphs. We show that our data structure can be built in a scalable manner and is both small and fast in practice compared to other data structures supporting such queries.

49 citations

Journal ArticleDOI
TL;DR: Recent advances in data integration-based machine learning for drug response prediction are summarized, by categorizing methods as matrix factorization-based, kernel-based and network-based methods.
Abstract: Predicting the response of cancer cell lines to specific drugs is one of the central problems in personalized medicine, where the cell lines show diverse characteristics. Researchers have developed a variety of computational methods to discover associations between drugs and cell lines, and improved drug sensitivity analyses by integrating heterogeneous biological data. However, choosing informative data sources and methods that can incorporate multiple sources efficiently is the challenging part of successful analysis in personalized medicine. The reason is that finding decisive factors of cancer and developing methods that can overcome the problems of integrating data, such as differences in data structures and data complexities, are difficult. In this review, we summarize recent advances in data integration-based machine learning for drug response prediction, by categorizing methods as matrix factorization-based, kernel-based and network-based methods. We also present a short description of relevant databases used as a benchmark in drug response prediction analyses, followed by providing a brief discussion of challenges faced in integrating and interpreting data from multiple sources. Finally, we address the advantages of combining multiple heterogeneous data sources on drug sensitivity analysis by showing an experimental comparison. Contact: betul.guvenc@aalto.fi.

49 citations


Authors

Showing all 632 results

NameH-indexPapersCitations
Dimitri P. Bertsekas9433285939
Olli Kallioniemi9035342021
Heikki Mannila7229526500
Jukka Corander6641117220
Jaakko Kangasjärvi6214617096
Aapo Hyvärinen6130144146
Samuel Kaski5852214180
Nadarajah Asokan5832711947
Aristides Gionis5829219300
Hannu Toivonen5619219316
Nicola Zamboni5312811397
Jorma Rissanen5215122720
Tero Aittokallio522718689
Juha Veijola5226119588
Juho Hamari5117616631
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

93% related

Microsoft
86.9K papers, 4.1M citations

93% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Facebook
10.9K papers, 570.1K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20224
202185
202097
2019140
2018127