scispace - formally typeset
Search or ask a question

Showing papers by "Helsinki University of Technology published in 2019"


Posted Content
TL;DR: Experimental results on the tasks of graph classification and molecular property prediction show that InfoGraph is superior to state-of-the-art baselines and InfoGraph* can achieve performance competitive with state- of- the-art semi-supervised models.
Abstract: This paper studies learning the representations of whole graphs in both unsupervised and semi-supervised scenarios. Graph-level representations are critical in a variety of real-world applications such as predicting the properties of molecules and community analysis in social networks. Traditional graph kernel based methods are simple, yet effective for obtaining fixed-length representations for graphs but they suffer from poor generalization due to hand-crafted designs. There are also some recent methods based on language models (e.g. graph2vec) but they tend to only consider certain substructures (e.g. subtrees) as graph representatives. Inspired by recent progress of unsupervised representation learning, in this paper we proposed a novel method called InfoGraph for learning graph-level representations. We maximize the mutual information between the graph-level representation and the representations of substructures of different scales (e.g., nodes, edges, triangles). By doing so, the graph-level representations encode aspects of the data that are shared across different scales of substructures. Furthermore, we further propose InfoGraph*, an extension of InfoGraph for semi-supervised scenarios. InfoGraph* maximizes the mutual information between unsupervised graph representations learned by InfoGraph and the representations learned by existing supervised methods. As a result, the supervised encoder learns from unlabeled data while preserving the latent semantic space favored by the current supervised task. Experimental results on the tasks of graph classification and molecular property prediction show that InfoGraph is superior to state-of-the-art baselines and InfoGraph* can achieve performance competitive with state-of-the-art semi-supervised models.

394 citations


Proceedings Article
24 May 2019
TL;DR: Manifold Mixup as discussed by the authors leverages semantic interpolations as additional training signal, obtaining neural networks with smoother decision boundaries at multiple levels of representation, as a result, neural networks trained with Manifold mixup learn class-representations with fewer directions of variance.
Abstract: Deep neural networks excel at learning the training data, but often provide incorrect and confident predictions when evaluated on slightly different test examples. This includes distribution shifts, outliers, and adversarial examples. To address these issues, we propose Manifold Mixup, a simple regularizer that encourages neural networks to predict less confidently on interpolations of hidden representations. Manifold Mixup leverages semantic interpolations as additional training signal, obtaining neural networks with smoother decision boundaries at multiple levels of representation. As a result, neural networks trained with Manifold Mixup learn class-representations with fewer directions of variance. We prove theory on why this flattening happens under ideal conditions, validate it on practical situations, and connect it to previous works on information theory and generalization. In spite of incurring no significant computation and being implemented in a few lines of code, Manifold Mixup improves strong baselines in supervised learning, robustness to single-step adversarial attacks, and test log-likelihood.

388 citations


Proceedings Article
01 Jan 2019
TL;DR: This work enables practical deep learning while preserving benefits of Bayesian principles, and applies techniques such as batch normalisation, data augmentation, and distributed training to achieve similar performance in about the same number of epochs as the Adam optimiser.
Abstract: Bayesian methods promise to fix many shortcomings of deep learning, but they are impractical and rarely match the performance of standard methods, let alone improve them. In this paper, we demonstrate practical training of deep networks with natural-gradient variational inference. By applying techniques such as batch normalisation, data augmentation, and distributed training, we achieve similar performance in about the same number of epochs as the Adam optimiser, even on large datasets such as ImageNet. Importantly, the benefits of Bayesian principles are preserved: predictive probabilities are well-calibrated, uncertainties on out-of-distribution data are improved, and continual-learning performance is boosted. This work enables practical deep learning while preserving benefits of Bayesian principles. A PyTorch implementation is available as a plug-and-play optimiser.

167 citations


Posted Content
TL;DR: DAWN (Dynamic Adversarial Watermarking of Neural Networks), the first approach to use watermarking to deter model extraction theft, is introduced and is shown to be resilient against two state-of-the-art model extraction attacks.
Abstract: Training machine learning (ML) models is expensive in terms of computational power, amounts of labeled data and human expertise. Thus, ML models constitute intellectual property (IP) and business value for their owners. Embedding digital watermarks during model training allows a model owner to later identify their models in case of theft or misuse. However, model functionality can also be stolen via model extraction, where an adversary trains a surrogate model using results returned from a prediction API of the original model. Recent work has shown that model extraction is a realistic threat. Existing watermarking schemes are ineffective against IP theft via model extraction since it is the adversary who trains the surrogate model. In this paper, we introduce DAWN (Dynamic Adversarial Watermarking of Neural Networks), the first approach to use watermarking to deter model extraction IP theft. Unlike prior watermarking schemes, DAWN does not impose changes to the training process but it operates at the prediction API of the protected model, by dynamically changing the responses for a small subset of queries (e.g., 1- 2^{-64}$), incurring negligible loss of prediction accuracy (0.03-0.5%).

93 citations


Posted Content
TL;DR: GraphMix is presented, a regularization method for Graph Neural Network based semi-supervised object classification, whereby it is proposed to train a fully-connected network jointly with the graph neural network via parameter sharing and interpolation-based regularization.
Abstract: We present GraphMix, a regularization method for Graph Neural Network based semi-supervised object classification, whereby we propose to train a fully-connected network jointly with the graph neural network via parameter sharing and interpolation-based regularization. Further, we provide a theoretical analysis of how GraphMix improves the generalization bounds of the underlying graph neural network, without making any assumptions about the "aggregation" layer or the depth of the graph neural networks. We experimentally validate this analysis by applying GraphMix to various architectures such as Graph Convolutional Networks, Graph Attention Networks and Graph-U-Net. Despite its simplicity, we demonstrate that GraphMix can consistently improve or closely match state-of-the-art performance using even simpler architectures such as Graph Convolutional Networks, across three established graph benchmarks: Cora, Citeseer and Pubmed citation network datasets, as well as three newly proposed datasets: Cora-Full, Co-author-CS and Co-author-Physics.

80 citations


Posted Content
TL;DR: In this article, the authors present an evaluation metric that can separately and reliably measure both of these aspects in image generation tasks by forming explicit, non-parametric representations of the manifolds of real and generated data.
Abstract: The ability to automatically estimate the quality and coverage of the samples produced by a generative model is a vital requirement for driving algorithm research. We present an evaluation metric that can separately and reliably measure both of these aspects in image generation tasks by forming explicit, non-parametric representations of the manifolds of real and generated data. We demonstrate the effectiveness of our metric in StyleGAN and BigGAN by providing several illustrative examples where existing metrics yield uninformative or contradictory results. Furthermore, we analyze multiple design variants of StyleGAN to better understand the relationships between the model architecture, training methods, and the properties of the resulting sample distribution. In the process, we identify new variants that improve the state-of-the-art. We also perform the first principled analysis of truncation methods and identify an improved method. Finally, we extend our metric to estimate the perceptual quality of individual samples, and use this to study latent space interpolations.

76 citations


Journal ArticleDOI
TL;DR: In this paper, a catalog of coronal pressure waves modeled in 3D to study the potential role of these waves in accelerating solar energetic particles (SEPs) measured in situ is presented.
Abstract: We develop and exploit a new catalog of coronal pressure waves modeled in 3D to study the potential role of these waves in accelerating solar energetic particles (SEPs) measured in situ. Our sample comprises modeled shocks and SEP events detected during solar cycle 24 observed over a broad range of longitudes. From the 3D reconstruction of shock waves using coronagraphic observations we derived the 3D velocity along the entire front as a function of time. Combining new reconstruction techniques with global models of the solar corona, we derive the 3D distribution of basic shock parameters such as Mach numbers, compression ratios, and shock geometry. We then model in a time-dependent manner how the shock wave connects magnetically with spacecraft making in situ measurements of SEPs. This allows us to compare modeled shock parameters deduced at the magnetically well-connected regions, with different key parameters of SEPs such as their maximum intensity. This approach accounts for projection effects associated with remote-sensing observations and constitutes the most extensive study to date of shock waves in the corona and their relation to SEPs. We find a high correlation between the maximum flux of SEPs and the strength of coronal shock waves quantified, for instance, by the Mach number. We discuss the implications of that work for understanding particle acceleration in the corona.

71 citations


Posted Content
TL;DR: In this article, the authors provide a signal processing perspective of mmWave JRC systems with an emphasis on waveform design and performance criteria that would optimally trade-off between communications and radar functionalities.
Abstract: Synergistic design of communications and radar systems with common spectral and hardware resources is heralding a new era of efficiently utilizing a limited radio-frequency spectrum. Such a joint radar-communications (JRC) model has advantages of low-cost, compact size, less power consumption, spectrum sharing, improved performance, and safety due to enhanced information sharing. Today, millimeter-wave (mm-wave) communications have emerged as the preferred technology for short distance wireless links because they provide transmission bandwidth that is several gigahertz wide. This band is also promising for short-range radar applications, which benefit from the high-range resolution arising from large transmit signal bandwidths. Signal processing techniques are critical in implementation of mmWave JRC systems. Major challenges are joint waveform design and performance criteria that would optimally trade-off between communications and radar functionalities. Novel multiple-input-multiple-output (MIMO) signal processing techniques are required because mmWave JRC systems employ large antenna arrays. There are opportunities to exploit recent advances in cognition, compressed sensing, and machine learning to reduce required resources and dynamically allocate them with low overheads. This article provides a signal processing perspective of mmWave JRC systems with an emphasis on waveform design.

69 citations


Proceedings ArticleDOI
01 Jan 2019
TL;DR: In this paper, a coarse-to-fine CNN-based framework was proposed for dense pixel correspondence estimation between two images. But the model is trained on synthetic transformations and demonstrates very good performance to unseen, realistic, data.
Abstract: This paper addresses the challenge of dense pixel correspondence estimation between two images. This problem is closely related to optical flow estimation task where ConvNets (CNNs) have recently achieved significant progress. While optical flow methods produce very accurate results for the small pixel translation and limited appearance variation scenarios, they hardly deal with the strong geometric transformations that we consider in this work. In this paper, we propose a coarse-to-fine CNN-based framework that can leverage the advantages of optical flow approaches and extend them to the case of large transformations providing dense and subpixel accurate estimates. It is trained on synthetic transformations and demonstrates very good performance to unseen, realistic, data. Further, we apply our method to the problem of relative camera pose estimation and demonstrate that the model outperforms existing dense approaches.

67 citations


Posted Content
TL;DR: This work proposes Interpolated Adversarial Training, which employs recently proposed interpolation based training methods in the framework of adversarial training, which retains adversarial robustness while achieving a standard test error of only 6.45%.
Abstract: Adversarial robustness has become a central goal in deep learning, both in the theory and the practice. However, successful methods to improve the adversarial robustness (such as adversarial training) greatly hurt generalization performance on the unperturbed data. This could have a major impact on how the adversarial robustness affects real world systems (i.e. many may opt to forego robustness if it can improve accuracy on the unperturbed data). We propose Interpolated Adversarial Training, which employs recently proposed interpolation based training methods in the framework of adversarial training. On CIFAR-10,adversarial training increases the standard test error (when there is no adversary) from 4.43% to 12.32%, whereas with our Interpolated adversarial training we retain the adversarial robustness while achieving a standard test error of only 6.45%. With our technique, the relative increase in the standard error for the robust model is reduced from 178.1% to just 45.5%. Moreover, we provide mathematical analysis of Interpolated Adversarial Training to confirm its efficiencies and demonstrate its advantages in terms of robustness and generalization.

61 citations


Posted Content
TL;DR: This work proposes to address the problem of sim-to-real domain transfer by using meta learning to train a policy that can adapt to a variety of dynamic conditions, and using a task-specific trajectory generation model to provide an action space that facilitates quick exploration.
Abstract: Modern reinforcement learning methods suffer from low sample efficiency and unsafe exploration, making it infeasible to train robotic policies entirely on real hardware. In this work, we propose to address the problem of sim-to-real domain transfer by using meta learning to train a policy that can adapt to a variety of dynamic conditions, and using a task-specific trajectory generation model to provide an action space that facilitates quick exploration. We evaluate the method by performing domain adaptation in simulation and analyzing the structure of the latent space during adaptation. We then deploy this policy on a KUKA LBR 4+ robot and evaluate its performance on a task of hitting a hockey puck to a target. Our method shows more consistent and stable domain adaptation than the baseline, resulting in better overall performance.

Proceedings ArticleDOI
TL;DR: This work considers the problem of defining a robust measure of dimension for 0/1 datasets, and shows that the basic idea of fractal dimension can be adapted for binary data.
Abstract: Many 0/1 datasets have a very large number of variables; on the other hand, they are sparse and the dependency structure of the variables is simpler than the number of variables would suggest. Defining the effective dimensionality of such a dataset is a nontrivial problem. We consider the problem of defining a robust measure of dimension for 0/1 datasets, and show that the basic idea of fractal dimension can be adapted for binary data. However, as such the fractal dimension is difficult to interpret. Hence we introduce the concept of normalized fractal dimension. For a dataset $D$, its normalized fractal dimension is the number of columns in a dataset $D'$ with independent columns and having the same (unnormalized) fractal dimension as $D$. The normalized fractal dimension measures the degree of dependency structure of the data. We study the properties of the normalized fractal dimension and discuss its computation. We give empirical results on the normalized fractal dimension, comparing it against baseline measures such as PCA. We also study the relationship of the dimension of the whole dataset and the dimensions of subgroups formed by clustering. The results indicate interesting differences between and within datasets.

Proceedings Article
01 Jan 2019
TL;DR: New approaches to combining information encoded within the learned representations of auto-encoders such that a resynthesised output is trained to fool an adversarial discriminator for real versus synthesised data are explored.
Abstract: In this paper, we explore new approaches to combining information encoded within the learned representations of auto-encoders. We explore models that are capable of combining the attributes of multiple inputs such that a resynthesised output is trained to fool an adversarial discriminator for real versus synthesised data. Furthermore, we explore the use of such an architecture in the context of semi-supervised learning, where we learn a mixing function whose objective is to produce interpolations of hidden states, or masked combinations of latent representations that are consistent with a conditioned class label. We show quantitative and qualitative evidence that such a formulation is an interesting avenue of research.

Posted Content
TL;DR: The proposed Interpretable and Controllable face reenactment network (ICface) is compared to the state-of-the-art neural network based face animation techniques in multiple tasks and the results indicate that ICface produces better visual quality, while being more versatile than most of the comparison methods.
Abstract: This paper presents a generic face animator that is able to control the pose and expressions of a given face image. The animation is driven by human interpretable control signals consisting of head pose angles and the Action Unit (AU) values. The control information can be obtained from multiple sources including external driving videos and manual controls. Due to the interpretable nature of the driving signal, one can easily mix the information between multiple sources (e.g. pose from one image and expression from another) and apply selective post-production editing. The proposed face animator is implemented as a two-stage neural network model that is learned in a self-supervised manner using a large video collection. The proposed Interpretable and Controllable face reenactment network (ICface) is compared to the state-of-the-art neural network-based face animation techniques in multiple tasks. The results indicate that ICface produces better visual quality while being more versatile than most of the comparison methods. The introduced model could provide a lightweight and easy to use tool for a multitude of advanced image and video editing tasks.

Proceedings ArticleDOI
TL;DR: This paper presents a simple greedy approach that builds a family of itemsets directly from data that allows for complex interactions between the attributes, not just co-occurrences of 1s.
Abstract: The problem of selecting small groups of itemsets that represent the data well has recently gained a lot of attention. We approach the problem by searching for the itemsets that compress the data efficiently. As a compression technique we use decision trees combined with a refined version of MDL. More formally, assuming that the items are ordered, we create a decision tree for each item that may only depend on the previous items. Our approach allows us to find complex interactions between the attributes, not just co-occurrences of 1s. Further, we present a link between the itemsets and the decision trees and use this link to export the itemsets from the decision trees. In this paper we present two algorithms. The first one is a simple greedy approach that builds a family of itemsets directly from data. The second one, given a collection of candidate itemsets, selects a small subset of these itemsets. Our experiments show that these approaches result in compact and high quality descriptions of the data.

Posted Content
TL;DR: This work presents Ordinary Differential Equation Variational Auto-Encoder, a latent second order ODE model for high-dimensional sequential data that can simultaneously learn the embedding of high dimensional trajectories and infer arbitrarily complex continuous-time latent dynamics.
Abstract: We present Ordinary Differential Equation Variational Auto-Encoder (ODE$^2$VAE), a latent second order ODE model for high-dimensional sequential data. Leveraging the advances in deep generative models, ODE$^2$VAE can simultaneously learn the embedding of high dimensional trajectories and infer arbitrarily complex continuous-time latent dynamics. Our model explicitly decomposes the latent space into momentum and position components and solves a second order ODE system, which is in contrast to recurrent neural network (RNN) based time series models and recently proposed black-box ODE techniques. In order to account for uncertainty, we propose probabilistic latent ODE dynamics parameterized by deep Bayesian neural networks. We demonstrate our approach on motion capture, image rotation and bouncing balls datasets. We achieve state-of-the-art performance in long term motion prediction and imputation tasks.

Posted Content
TL;DR: In this paper, a numerical accountant for evaluating the privacy loss for algorithms with continuous one dimensional output is proposed, which can be applied to the subsampled multidimensional Gaussian mechanism which underlies the popular DP stochastic gradient descent.
Abstract: Differentially private (DP) machine learning has recently become popular. The privacy loss of DP algorithms is commonly reported using $(\varepsilon,\delta)$-DP. In this paper, we propose a numerical accountant for evaluating the privacy loss for algorithms with continuous one dimensional output. This accountant can be applied to the subsampled multidimensional Gaussian mechanism which underlies the popular DP stochastic gradient descent. The proposed method is based on a numerical approximation of an integral formula which gives the exact $(\varepsilon,\delta)$-values. The approximation is carried out by discretising the integral and by evaluating discrete convolutions using the fast Fourier transform algorithm. We give both theoretical error bounds and numerical error estimates for the approximation. Experimental comparisons with state-of-the-art techniques demonstrate significant improvements in bound tightness and/or computation time. Python code for the method can be found in Github (this https URL).

Posted Content
TL;DR: In this paper, a deep neural network with a modular architecture consisting of separate perception, policy, and trajectory parts is employed to train an end-to-end robotic manipulator.
Abstract: Training end-to-end deep robot policies requires a lot of domain-, task-, and hardware-specific data, which is often costly to provide. In this work, we propose to tackle this issue by employing a deep neural network with a modular architecture, consisting of separate perception, policy, and trajectory parts. Each part of the system is trained fully on synthetic data or in simulation. The data is exchanged between parts of the system as low-dimensional latent representations of affordances and trajectories. The performance is then evaluated in a zero-shot transfer scenario using Franka Panda robot arm. Results demonstrate that a low-dimensional representation of scene affordances extracted from an RGB image is sufficient to successfully train manipulator policies. We also introduce a method for affordance dataset generation, which is easily generalizable to new tasks, objects and environments, and requires no manual pixel labeling.

Posted Content
TL;DR: It follows that there is no deterministic algorithm for maximal matchings or maximal independent sets that runs in o(Δ + log n / log log n) rounds; this is an improvement over prior lower bounds also as a function of n.
Abstract: There are distributed graph algorithms for finding maximal matchings and maximal independent sets in $O(\Delta + \log^* n)$ communication rounds; here $n$ is the number of nodes and $\Delta$ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on $n$ is optimal: these problems cannot be solved in $o(\log^* n)$ rounds even if $\Delta = 2$. However, the dependency on $\Delta$ is a long-standing open question, and there is currently an exponential gap between the upper and lower bounds. We prove that the upper bounds are tight. We show that maximal matchings and maximal independent sets cannot be found in $o(\Delta + \log \log n / \log \log \log n)$ rounds with any randomized algorithm in the LOCAL model of distributed computing. As a corollary, it follows that there is no deterministic algorithm for maximal matchings or maximal independent sets that runs in $o(\Delta + \log n / \log \log n)$ rounds; this is an improvement over prior lower bounds also as a function of $n$.

Journal ArticleDOI
TL;DR: In this paper, surface shear waves at 22 MHz in a 0.5-micron-thick polymer film on SiO2/Si substrate at low temperatures using suspended and non-suspended graphene as detectors.
Abstract: We have investigated surface shear waves at 22 MHz in a 0.5-micron-thick polymer film on SiO2/Si substrate at low temperatures using suspended and non-suspended graphene as detectors. By tracking ultrasound modes detected by oscillations of a trilayer graphene membrane both in vacuum and in helium superfluid, we assign the resonances to surface shear modes, generalized Love waves, in the resist/silicon-substrate system loaded with gold. The propagation velocity of these shear modes displays a logarithmic temperature dependence below 1 K, which is characteristic for modification of the elastic properties of a disordered solid owing to a large density of two level state (TLS) systems. For the dissipation of the shear mode, we find a striking logarithmic temperature dependence, which indicates a basic relation between the speed of the surface wave propagation and the mode dissipation.

Proceedings ArticleDOI
TL;DR: In this paper, a CNN is trained to take a partial view of the object as input and output the completed shape as a voxel grid for shape completion, and a dropout layer is enabled not only during training but also at run time to generate a set of shape samples representing the shape uncertainty through Monte Carlo sampling.
Abstract: We present a method for planning robust grasps over uncertain shape completed objects. For shape completion, a deep neural network is trained to take a partial view of the object as input and outputs the completed shape as a voxel grid. The key part of the network is dropout layers which are enabled not only during training but also at run-time to generate a set of shape samples representing the shape uncertainty through Monte Carlo sampling. Given the set of shape completed objects, we generate grasp candidates on the mean object shape but evaluate them based on their joint performance in terms of analytical grasp metrics on all the shape candidates. We experimentally validate and benchmark our method against another state-of-the-art method with a Barrett hand on 90000 grasps in simulation and 200 grasps on a real Franka Emika Panda. All experimental results show statistically significant improvements both in terms of grasp quality metrics and grasp success rate, demonstrating that planning shape-uncertainty-aware grasps brings significant advantages over solely planning on a single shape estimate, especially when dealing with complex or unknown objects.

Posted Content
TL;DR: This work evaluates the current state-of-the-art model extraction attack (Knockoff nets) against complex models, and introduces a defense based on distinguishing queries used for Knockoff nets from benign queries.
Abstract: Recently, machine learning (ML) has introduced advanced solutions to many domains. Since ML models provide business advantage to model owners, protecting intellectual property of ML models has emerged as an important consideration. Confidentiality of ML models can be protected by exposing them to clients only via prediction APIs. However, model extraction attacks can steal the functionality of ML models using the information leaked to clients through the results returned via the API. In this work, we question whether model extraction is a serious threat to complex, real-life ML models. We evaluate the current state-of-the-art model extraction attack (Knockoff nets) against complex models. We reproduce and confirm the results in the original paper. But we also show that the performance of this attack can be limited by several factors, including ML model architecture and the granularity of API response. Furthermore, we introduce a defense based on distinguishing queries used for Knockoff nets from benign queries. Despite the limitations of the Knockoff nets, we show that a more realistic adversary can effectively steal complex ML models and evade known defenses.

Journal ArticleDOI
TL;DR: The speedup of the adiabatic population transfer in a three-level superconducting transmon circuit is demonstrated by suppressing the spurious nonadiabatic excitations with an additional two-photon microwave pulse.
Abstract: Adiabatic manipulation of the quantum state is an essential tool in modern quantum information processing. Here we demonstrate the speed-up of the adiabatic population transfer in a three-level superconducting transmon circuit by suppressing the spurious non-adiabatic excitations with an additional two-photon microwave pulse. We apply this superadiabatic method to the stimulated Raman adiabatic passage, realizing fast and robust population transfer from the ground state to the second excited state of the quantum circuit.

Posted Content
TL;DR: A pose-kernel structure that encourages similar poses to have resembling latent spaces is proposed that circumvents standard pitfalls in scaling Gaussian process inference, and can run in real-time on smart devices.
Abstract: We propose a novel idea for depth estimation from multi-view image-pose pairs, where the model has capability to leverage information from previous latent-space encodings of the scene. This model uses pairs of images and poses, which are passed through an encoder--decoder model for disparity estimation. The novelty lies in soft-constraining the bottleneck layer by a nonparametric Gaussian process prior. We propose a pose-kernel structure that encourages similar poses to have resembling latent spaces. The flexibility of the Gaussian process (GP) prior provides adapting memory for fusing information from previous views. We train the encoder--decoder and the GP hyperparameters jointly end-to-end. In addition to a batch method, we derive a lightweight estimation scheme that circumvents standard pitfalls in scaling Gaussian process inference, and demonstrate how our scheme can run in real-time on smart devices.

Posted Content
TL;DR: In this article, the authors consider the problem of discovering polarized communities in signed networks and develop two intuitive spectral algorithms: one deterministic, and one randomized with quality guarantee, tight up to constant factors.
Abstract: Signed networks contain edge annotations to indicate whether each interaction is friendly (positive edge) or antagonistic (negative edge). The model is simple but powerful and it can capture novel and interesting structural properties of real-world phenomena. The analysis of signed networks has many applications from modeling discussions in social media, to mining user reviews, and to recommending products in e-commerce sites. In this paper we consider the problem of discovering polarized communities in signed networks. In particular, we search for two communities (subsets of the network vertices) where within communities there are mostly positive edges while across communities there are mostly negative edges. We formulate this novel problem as a "discrete eigenvector" problem, which we show to be NP-hard. We then develop two intuitive spectral algorithms: one deterministic, and one randomized with quality guarantee $\sqrt{n}$ (where $n$ is the number of vertices in the graph), tight up to constant factors. We validate our algorithms against non-trivial baselines on real-world signed networks. Our experiments confirm that our algorithms produce higher quality solutions, are much faster and can scale to much larger networks than the baselines, and are able to detect ground-truth polarized communities.

Journal ArticleDOI
TL;DR: Relocatable modular buildings could solve the challenges posed by quickly changing demographics in different types of regions and deliver both usability and circularity.
Abstract: Global megatrends such as urbanization and ageing of the population result in fast-paced demographic changes, which pose different types of challenges for different regions. While many rural municipalities bear the burden of under-used buildings, cities are in a hurry to develop new ones to meet new space demands. The purpose of this paper is to assess the potential of relocatable modular buildings to address these challenges, following the principles of circular economy, while at the same time offering usability.,This multiple case study explores existing relocatable modular health-care buildings in Finland. The case buildings host hospital support functions, imaging services, a health-care centre and a care home. The primary data comprise 21 semi-structured interviews and observation during factory and site visits.,Based on the findings, relocatable modular buildings have many benefits and provide a viable option for cities and municipalities struggling to meet their fluctuating space demands. Some challenges were also identified, mainly derived from the dimensional restrictions of the modules.,This research contributes to the emerging body of knowledge on circular economy in the built environment. More specifically, the research provides a very concrete example of circularity and details a framework for usable and relocatable modular buildings. In conclusion, relocatable modular buildings could solve the challenges posed by quickly changing demographics in different types of regions and deliver both usability and circularity.

Journal ArticleDOI
TL;DR: In this paper, a non-iterative two-phase subspace-based DOA estimation method is proposed, where the first phase is based on estimating the noise subspace via eigendecomposition (ED) of some properly designed matrix, and the second phase is used to estimate the noise covariance matrix.
Abstract: The uniform white noise assumption is one of the basic assumptions in most of the existing directional-of-arrival (DOA) estimation methods. In many applications, however, the non-uniform white noise model is more adequate. Then the noise variances at different sensors have to be also estimated as nuisance parameters while estimating DOAs. In this letter, different from the existing iterative methods that address the problem of non-uniform noise, a non-iterative two-phase subspace-based DOA estimation method is proposed. The first phase of the method is based on estimating the noise subspace via eigendecomposition (ED) of some properly designed matrix and it avoids estimating the noise covariance matrix. In the second phase, the results achieved in the first phase are used to estimate the noise covariance matrix, followed by estimating the noise subspace via generalized ED. Since the proposed method estimates DOAs in a non-iterative manner, it is computationally more efficient and has no convergence issues as compared to the existing methods. Simulation results demonstrate better performance of the proposed method as compared to other existing state-of-the-art methods.

Posted Content
TL;DR: This work presents authenticated call stack (ACS), an approach that uses chained message authentication codes (MACs) and shows that PACStack achieves security comparable to hardware-assisted shadow stacks without requiring dedicated hardware.
Abstract: A popular run-time attack technique is to compromise the control-flow integrity of a program by modifying function return addresses on the stack. So far, shadow stacks have proven to be essential for comprehensively preventing return address manipulation. Shadow stacks record return addresses in integrity-protected memory secured with hardware-assistance or software access control. Software shadow stacks incur high overheads or trade off security for efficiency. Hardware-assisted shadow stacks are efficient and secure, but require the deployment of special-purpose hardware. We present authenticated call stack (ACS), an approach that uses chained message authentication codes (MACs). Our prototype, PACStack, uses the ARM general purpose hardware mechanism for pointer authentication (PA) to implement ACS. Via a rigorous security analysis, we show that PACStack achieves security comparable to hardware-assisted shadow stacks without requiring dedicated hardware. We demonstrate that PACStack's performance overhead is small (~3%).

Journal ArticleDOI
TL;DR: In this paper, the second-forbidden, non-unique, 2+→0+ ground state transition in the β decay of F20 was detected and the β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)± 0.07(sys), corresponding to logft=10.89(11).
Abstract: We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars that develop degenerate oxygen-neon cores. Using the new experimental data, we argue that the astrophysical electron-capture rate on Ne20 is now known to within better than 25% at the relevant temperatures and densities. (Less)

Posted Content
TL;DR: This work improves and generalizes two constructions for CDCs, the improved linkage construction and the parallel linkage construction, to the generalized linkageConstruction and the multiblock generalized linkage construction which yield many improved lower bounds for the cardinalities of CDCs.
Abstract: A constant-dimension code (CDC) is a set of subspaces of constant dimension in a common vector space with upper bounded pairwise intersection. We improve and generalize two constructions for CDCs, the improved linkage construction and the parallel linkage construction, to the generalized linkage construction which in turn yields many improved lower bounds for the cardinalities of CDCs; a quantity not known in general.