scispace - formally typeset
Search or ask a question
Institution

Helsinki University of Technology

About: Helsinki University of Technology is a based out in . It is known for research contribution in the topics: Artificial neural network & Finite element method. The organization has 8962 authors who have published 20136 publications receiving 723787 citations. The organization is also known as: TKK & Teknillinen korkeakoulu.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the energy levels of fermions bound to the vortex core are considered for the general case of chiral superconductors, and the effect of a single impurity on the spectrum of bound states is also considered.
Abstract: The energy levels of fermions bound to the vortex core are considered for the general case of chiral superconductors. There are two classes of chiral superconductivity: in the class I superconducting state the axisymmetric singly quantized vortex has the same energy spectrum of bound states as in an s-wave superconductor: E=(n+1/2)ω0, with integral n. In class II the corresponding spectrum is E=nω0 and thus contains a state with exactly zero energy. The effect of a single impurity on the spectrum of bound states is also considered. For class I the spectrum acquires the doubled period ΔE=2ω0 and consists of two equidistant sets of levels, in accordance with A. I. Larkin and Yu. N. Ovchinnikov, Phys. Rev. B 57, 5457 (1998). For the class II states the spectrum is not influenced by a single impurity if the same approximation is applied.

339 citations

Journal ArticleDOI
TL;DR: In this article, the degree of surface substitution (DSS) was determined using Si concentrations from XPS survey scans, as well as deconvoluted peaks in high-resolution C1s XPS spectra.
Abstract: Microfibrillated cellulose (MFC) obtained by disintegration of bleached softwood sulphite pulp in a homogenizer, was hydrophobically modified by surface silylation with chlorodimethyl isopropylsilane (CDMIPS). The silylated MFC was characterized by Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), transmission electron spectroscopy (TEM), X-ray photoelectron spectroscopy (XPS) and white light interferometry (WLI). The degree of surface substitution (DSS) was determined using Si concentrations from XPS survey scans, as well as deconvoluted peaks in high-resolution C1s XPS spectra. The DSS values obtained by the two methods were found to be in good agreement. MFC with DSS between 0.6 and 1 could be dispersed in a non-flocculating manner into non-polar solvents, TEM observations showing that the material had kept its initial morphological integrity. However, when CDMIPS in excess of 5 mol CDMIPS/glucose unit in the MFC was used, partial solubilization of the MFC occurred, resulting in a drop in the observed DSS and a loss of the microfibrillar character of the material. The wetting properties of films cast from suspension of the silylated MFC were also investigated. The contact angles of water on the films increased with increasing DSS of the MFC, approaching the contact angles observed on super hydrophobic surfaces for the MFC with the highest degree of substitution. This is believed to originate from a combination of low surface energy and surface microstructure in the films.

339 citations

Journal ArticleDOI
TL;DR: This paper overviews several procedures for generating the layers from a cad model such that the resulting part can be accurately manufactured using LMT.
Abstract: The 1980s witnessed the emergence of new manufacturing technologies that build parts layer by layer. These layered-manufacturing techniques can significantly reduce the design-to-product leadtimes. The paper overviews several procedures for generating the layers from a cad model such that the resulting part can be accurately manufactured using LMT.

339 citations

Journal ArticleDOI
TL;DR: In this paper, a novel assimilation technique based on (forward) modelling of observed brightness temperatures as a function of snow pack characteristics is introduced, which is a Bayesian approach that weighs the space-borne data and the reference field on SD interpolated from discrete synoptic observations with their estimated statistical accuracy.

338 citations

Journal ArticleDOI
TL;DR: MEG patterns following stimulation of different peripheral nerves indicate activation of an extensive cortical network and the serial versus parallel processing in the cortical somatosensory network is still under debate.
Abstract: Magnetoencephalography (MEG) is a totally non-invasive research method which provides information about cortical dynamics on a millisecond time-scale. Whole-scalp magnetic field patterns following stimulation of different peripheral nerves indicate activation of an extensive cortical network. At the SI cortex, the responses reflect mainly the activity of area 3b, with clearly somatotopical representations of different body parts. The SII cortex is activated bilaterally and it also receives, besides tactile input, nociceptive afference. Somatically evoked MEG signals may also be detected from the posterior parietal cortex, central mesial cortex and the frontal lobe. The serial versus parallel processing in the cortical somatosensory network is still under debate.

337 citations


Authors

Showing all 8962 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Hannu Kurki-Suonio13843399607
Nicolas Gisin12582764298
Anne Lähteenmäki11648581977
Riitta Hari11149143873
Andreas Richter11076948262
Mika Sillanpää96101944260
Markku Leskelä9487636881
Ullrich Scherf9273536972
Mikko Ritala9158429934
Axel H. E. Müller8956430283
Karl Henrik Johansson88108933751
T. Poutanen8612033158
Elina Lindfors8642023846
Günter Breithardt8555433165
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

95% related

Delft University of Technology
94.4K papers, 2.7M citations

95% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Normale Supérieure
99.4K papers, 3M citations

93% related

Technical University of Denmark
66.3K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2021154
2020153
2019155
201851
201714
201630