scispace - formally typeset
Search or ask a question
Institution

Henan Normal University

EducationXinxiang, China
About: Henan Normal University is a education organization based out in Xinxiang, China. It is known for research contribution in the topics: Catalysis & Ionic liquid. The organization has 10863 authors who have published 11077 publications receiving 166773 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the transition-state theory to calculate apparent molar volumes and viscosity B -coefficients of the amino acids in aqueous calcium chloride.

167 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 can be found in this paper.
Abstract: Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.

167 citations

Journal ArticleDOI
25 Jun 2021-ACS Nano
TL;DR: In this paper, a facile radical copolymerization of hydroxyethyl acrylate (HEA) and sodium vinylsulfonate (VS) copolymers was proposed to achieve strong interfacial adhesion to rigid polyurethane (PU) foam and other substrates.
Abstract: Lightweight polymeric foam is highly attractive as thermal insulation materials for energy-saving buildings but is plagued by its inherent flammability. Fire-retardant coatings are suggested as an effective means to solve this problem. However, most of the existing fire-retardant coatings suffer from poor interfacial adhesion to polymeric foam during use. In nature, snails and tree frogs exhibit strong adhesion to a variety of surfaces by interfacial hydrogen-bonding and mechanical interlocking, respectively. Inspired by their adhesion mechanisms, we herein rationally design fire-retardant polymeric coatings with phase-separated micro/nanostructures via a facile radical copolymerization of hydroxyethyl acrylate (HEA) and sodium vinylsulfonate (VS). The resultant waterborne poly(VS-co-HEA) copolymers exhibit strong interfacial adhesion to rigid polyurethane (PU) foam and other substrates, better than most of the current adhesives because of the combination of interfacial hydrogen-bonding and mechanical interlocking. Besides a superhydrophobic feature, the poly(VS-co-HEA)-coated PU foam can self-extinguish a flame, exhibiting a desired V-0 rating during vertical burning and low heat and smoke release due to its high charring capability, which is superior to its previous counterparts. Moreover, the foam thermal insulation is well-preserved and agrees well with theoretical calculations. This work offers a facile biomimetic strategy for creating advanced adhesive fire-retardant polymeric coatings for many flammable substrates.

166 citations

Journal ArticleDOI
M. Ablikim, M. N. Achasov1, Xiaocong Ai, O. Albayrak2  +371 moreInstitutions (48)
TL;DR: In this paper, the BESIII detector operating at the BEPCII storage ring at center-of-mass energies from 4.009 to 4.420 GeV is observed for the first time with a statistical significance of 6.3 sigma.
Abstract: With data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energies from 4.009 to 4.420 GeV, the process e(+)e(-) -> gamma X(3872) is observed for the first time with a statistical significance of 6.3 sigma. The measured mass of the X(3872) is (3871.9 +/- 0.7(stat) +/- 0.2(syst)) MeV/c(2), in agreement with previous measurements. Measurements of the product of the cross section sigma[e(+)e(-) -> gamma X(3872)] and the branching fraction B [X(3872) -> pi(+)pi(-)J/psi] at center-of-mass energies 4.009, 4.229, 4.260, and 4.360 GeV are reported. Our measurements are consistent with expectations for the radiative transition process Y(4260) -> gamma X(3872).

166 citations

Journal ArticleDOI
TL;DR: In this article, a polar molecule, p-fluorophenethylammonium, was employed to generate quasi-2D perovskites with reduced binding energy, which achieved a peak external quantum efficiency of 20.36%.
Abstract: Rapid Auger recombination represents an important challenge faced by quasi-2D perovskites, which induces resulting perovskite light-emitting diodes’ (PeLEDs) efficiency roll-off. In principle, Auger recombination rate is proportional to materials’ exciton binding energy (Eb). Thus, Auger recombination can be suppressed by reducing the corresponding materials’ Eb. Here, a polar molecule, p-fluorophenethylammonium, is employed to generate quasi-2D perovskites with reduced Eb. Recombination kinetics reveal the Auger recombination rate does decrease to one-order-of magnitude lower compared to its PEA+ analogues. After effective passivation, nonradiative recombination is greatly suppressed, which enables resulting films to exhibit outstanding photoluminescence quantum yields in a broad range of excitation density. We herein demonstrate the very efficient PeLEDs with a peak external quantum efficiency of 20.36%. More importantly, devices exhibit a record luminance of 82,480 cd m−2 due to the suppressed efficiency roll-off, which represent one of the brightest visible PeLEDs yet. Designing efficient perovskite light-emitting diodes remains a challenge due to the strong Auger recombination and resulting Joule heating. Here, the authors propose polarizable p-fluorophenethylammonium to generate quasi-2D perovskites with reduced binding energy developing perovskite light-emitting diodes with a peak EQE of 20.36% and a maximum luminance of 82,480 cdm-2.

164 citations


Authors

Showing all 10953 results

NameH-indexPapersCitations
Hua Zhang1631503116769
Jie Wu112153756708
Peng Wang108167254529
Lei Liu98204151163
Lixia Zhang9335147817
Zhongwei Chen9251133700
Wei Chen9093835799
Zhiguo Ding8881735162
Xiaolong Wang8196631455
Junhua Li7748021626
Jiujun Zhang7627639624
Lei Liao7527618815
Peng Xu75115125005
Wei Wang75116723558
Tony D. James7343521605
Network Information
Related Institutions (5)
Nankai University
51.8K papers, 1.1M citations

93% related

Xiamen University
54.4K papers, 1M citations

90% related

Dalian University of Technology
71.9K papers, 1.1M citations

89% related

Nanjing University
105.5K papers, 2.2M citations

89% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202349
2022173
20211,281
20201,042
2019987
2018818