scispace - formally typeset
Search or ask a question
Institution

Henan Normal University

EducationXinxiang, China
About: Henan Normal University is a education organization based out in Xinxiang, China. It is known for research contribution in the topics: Catalysis & Ionic liquid. The organization has 10863 authors who have published 11077 publications receiving 166773 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Gen expression bias across surveyed tissues such that subgenome B is more dominant in homoeologous expression is found, and CG methylation in promoter regions may play an important role in altering gene expression in allotetraploid C. carpio.
Abstract: Common carp (Cyprinus carpio) is an allotetraploid species derived from recent whole genome duplication and provides a model to study polyploid genome evolution in vertebrates. Here, we generate three chromosome-level reference genomes of C. carpio and compare to related diploid Cyprinid genomes. We identify a Barbinae lineage as potential diploid progenitor of C. carpio and then divide the allotetraploid genome into two subgenomes marked by a distinct genome similarity to the diploid progenitor. We estimate that the two diploid progenitors diverged around 23 Mya and merged around 12.4 Mya based on the divergence rates of homoeologous genes and transposable elements in two subgenomes. No extensive gene losses are observed in either subgenome. Instead, we find gene expression bias across surveyed tissues such that subgenome B is more dominant in homoeologous expression. CG methylation in promoter regions may play an important role in altering gene expression in allotetraploid C. carpio.

136 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of small-molecule fluorescent chemosensors for the detection of micro-environments in specific cellular regions is presented. But, there has not been a comprehensive and critical review published recently.
Abstract: The microenvironment (local environment), including viscosity, temperature, polarity, hypoxia, and acidic-basic status (pH), plays indispensable roles in cellular processes. Significantly, organelles require an appropriate microenvironment to perform their specific physiological functions, and disruption of the microenvironmental homeostasis could lead to malfunctions of organelles, resulting in disorder and disease development. Consequently, monitoring the microenvironment within specific organelles is vital to understand organelle-related physiopathology. Over the past few years, many fluorescent probes have been developed to help reveal variations in the microenvironment within specific cellular regions. Given that a comprehensive understanding of the microenvironment in a particular cellular region is of great significance for further exploration of life events, a thorough summary of this topic is urgently required. However, there has not been a comprehensive and critical review published recently on small-molecule fluorescent chemosensors for the cellular microenvironment. With this review, we summarize the recent progress since 2015 towards small-molecule based fluorescent probes for imaging the microenvironment within specific cellular regions, including the mitochondria, lysosomes, lipid drops, endoplasmic reticulum, golgi, nucleus, cytoplasmic matrix and cell membrane. Further classifications at the suborganelle level, according to detection of microenvironmental factors by probes, including polarity, viscosity, temperature, pH and hypoxia, are presented. Notably, in each category, design principles, chemical synthesis, recognition mechanism, fluorescent signals, and bio-imaging applications are summarized and compared. In addition, the limitations of the current microenvironment-sensitive probes are analyzed and the prospects for future developments are outlined. In a nutshell, this review comprehensively summarizes and highlights recent progress towards small molecule based fluorescent probes for sensing and imaging the microenvironment within specific cellular regions since 2015. We anticipate that this summary will facilitate a deeper understanding of the topic and encourage research directed towards the development of probes for the detection of cellular microenvironments.

136 citations

Journal ArticleDOI
TL;DR: In this article, the fabrication of novel ZnSnO3 hollow nanospheres/reduced graphene oxide (RGO) hybrid nanocomposite is reported for the first time.
Abstract: The fabrication of novel ZnSnO3 hollow nanospheres/reduced graphene oxide (RGO) hybrid nanocomposite is reported for the first time. The nanocomposites were synthesized via a facile route, and were well characterized with the aid of XRD, FTIR, SEM, TEM, BET, UV–vis, and PL techniques. Moreover, the synthesized nanocomposites were used as photocatalysts in the application of the degradation of pharmaceutical wastewater. In this study, ZnSnO3 hollow nanospheres showed high efficiency in photocatalytic degradation of metronidazole under ultraviolet (UV) light irradiation. More interestingly, the photocatalytic activities of these nanospheres could be enhanced by coupling with RGO, where a large improvement (approx. 30.4% increase compared with pure ZnSnO3) in photodegradation of metronidazole was observed on the prepared ZnSnO3/RGO hybrid nanocomposites under visible light irradiation. This improvement might be attributed to the advanced adsorption efficiency of molecules and enhanced visible light absorption within the hybrid nanocomposites by the introduction of RGO. Such study might pave the way toward designing novel photocatalyst systems for efficient degradation of pharmaceutical wastewater.

134 citations

Journal ArticleDOI
TL;DR: Two novel "turn-on" fluorescent probes with perylene tetracarboxylic diimide (PDI) as the fluorophore and two different di-(2-picolyl)-amine groups as the metal ion receptor were successfully synthesized with satisfactory yields, suggesting that PDIs are favorable fluorophores for a "turn on" fluorescence probe for paramagnetic transition metal ions because of their high oxidation potential.
Abstract: Two novel “turn-on” fluorescent probes with perylene tetracarboxylic diimide (PDI) as the fluorophore and two different di-(2-picolyl)-amine (DPA) groups as the metal ion receptor (PDI-1 and PDI-2) were successfully synthesized with satisfactory yields. PDI-1 exhibited high selectivity toward Ni2+ in the presence of various other metal cations including Zn2+, Cd2+ and Cu2+ which were expected to interfere significantly. A 1 : 2 stoichiometry was found for the complex formed by PDI-1 and Ni2+ by a Job's plot and by non-linear least square fitting of the fluorescence titration curves. By introducing an extra diamino ethylene group between DPA and the phenyl bridge, the receptor was modified and the high selectivity of the sensor toward Ni2+ shifted to Fe3+. The enhancement factor of the fluorescence response of PDI-2 to Fe3+ was as high as 138. The binding behavior of the receptors in these two compounds is affected significantly by the PDI fluorophores. Most interestingly, both Ni2+ and Fe3+ are paramagnetic metal ions, which are known as fluorescence quenchers and are rarely targeted with “turn-on” fluorescence probes. This result suggests that PDIs are favorable fluorophores for a “turn-on” fluorescence probe for paramagnetic transition metal ions because of their high oxidation potential.

134 citations

Journal ArticleDOI
TL;DR: In this paper, experimental data of densities and viscosities are presented for the mixtures of the ionic liquid 1-butyl-3-methylimidazolium hexaflurophosphate, [C4mim][PF6], with acetone, 2-butanone, 3-pentanone and cyclopentanone.
Abstract: Experimental data of densities and viscosities are presented for the mixtures of the ionic liquid 1-butyl-3-methylimidazolium hexaflurophosphate, [C4mim][PF6], with acetone, 2-butanone, 3-pentanone, cyclopentanone and ethyl acetate at 298.15 K. Based on these data, excess molar volumes, VmE, and excess logarithm viscosities, (lnη)E, have been determined for the binaries. It is shown that all values of VmE are negative but those of (lnη)E are positive. Interestingly, a minimum in VmE and a maximum in (lnη)E are observed at about the same mole fraction of the ionic liquid (x = 0.3) for every mixture investigated. Combined with the VmE data reported in literature, the effects of the [PF6]− and [BF4]− anions are compared. The results have been discussed in terms of the ion–dipole interactions of the cations of the ionic liquids with the organic compounds as well as their influence on the association of [C4mim]+ and [PF6]− in the ionic liquid.

134 citations


Authors

Showing all 10953 results

NameH-indexPapersCitations
Hua Zhang1631503116769
Jie Wu112153756708
Peng Wang108167254529
Lei Liu98204151163
Lixia Zhang9335147817
Zhongwei Chen9251133700
Wei Chen9093835799
Zhiguo Ding8881735162
Xiaolong Wang8196631455
Junhua Li7748021626
Jiujun Zhang7627639624
Lei Liao7527618815
Peng Xu75115125005
Wei Wang75116723558
Tony D. James7343521605
Network Information
Related Institutions (5)
Nankai University
51.8K papers, 1.1M citations

93% related

Xiamen University
54.4K papers, 1M citations

90% related

Dalian University of Technology
71.9K papers, 1.1M citations

89% related

Nanjing University
105.5K papers, 2.2M citations

89% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202349
2022173
20211,281
20201,042
2019987
2018818