scispace - formally typeset
Search or ask a question
Institution

Henan Normal University

EducationXinxiang, China
About: Henan Normal University is a education organization based out in Xinxiang, China. It is known for research contribution in the topics: Catalysis & Ionic liquid. The organization has 10863 authors who have published 11077 publications receiving 166773 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The decolorization of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol(-1).

301 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of different reaction parameters such as initial pH, the initial hydrogen peroxide concentration ([H2O2]0), the initial ferrous concentration ([Fe2+] 0), and the initial Amido black 10B concentration ([dye]0) have been assessed.

301 citations

Journal ArticleDOI
TL;DR: This work synthesizes Ni-Fe layered-double-hydroxide (LDH) nanocages with tunable shells with appealing electrocatalytic activity for the oxygen evolution reaction in alkaline electrolyte via a facile one-pot self-templating method.
Abstract: Delicate design of nanostructures for oxygen-evolution electrocatalysts is an important strategy for accelerating the reaction kinetics of water splitting. In this work, Ni-Fe layered-double-hydroxide (LDH) nanocages with tunable shells are synthesized via a facile one-pot self-templating method. The number of shells can be precisely controlled by regulating the template etching at the interface. Benefiting from the double-shelled structure with large electroactive surface area and optimized chemical composition, the hierarchical Ni-Fe LDH nanocages exhibit appealing electrocatalytic activity for the oxygen evolution reaction in alkaline electrolyte. Particularly, double-shelled Ni-Fe LDH nanocages can achieve a current density of 20 mA cm-2 at a low overpotential of 246 mV with excellent stability.

298 citations

Journal ArticleDOI
TL;DR: A Rubidium-Cesium alloyed, quasi-two-dimensional perovskite is reported and its great potential for pure-blue PeLED applications is demonstrated and composition engineering and in-situ passivation are conducted to further improve the material’s emission property and stabilities.
Abstract: Device performance and in particular device stability for blue perovskite light-emitting diodes (PeLEDs) remain considerable challenges for the whole community. In this manuscript, we conceive an approach by tuning the ‘A-site’ cation composition of perovskites to develop blue-emitters. We herein report a Rubidium-Cesium alloyed, quasi-two-dimensional perovskite and demonstrate its great potential for pure-blue PeLED applications. Composition engineering and in-situ passivation are conducted to further improve the material’s emission property and stabilities. Consequently, we get a prominent film photoluminescence quantum yield of around 82% under low excitation density. Encouraged by these findings, we finally achieve a spectra-stable blue PeLED with the peak external quantum efficiency of 1.35% and a half-lifetime of 14.5 min, representing the most efficient and stable pure-blue PeLEDs reported so far. The strategy is also demonstrated to be able to generate efficient perovskite blue emitters and PeLEDs in the whole blue spectral region (from 454 to 492 nm). Besides device operational stability, the color stability is also an important challenge for the perovskite light-emitting diodes, especially the blue ones. Here Jiang et al. report the most efficient and color stable pure-blue perovskite LEDs so far, with a half-lifetime of 14.5 minutes.

298 citations

Journal ArticleDOI
TL;DR: Results obtained indicated that this system could be tuned to a great extent because ionic liquids can be designable and the method does not suffer from the limitations of that in conventional solvent micro-extraction.

297 citations


Authors

Showing all 10953 results

NameH-indexPapersCitations
Hua Zhang1631503116769
Jie Wu112153756708
Peng Wang108167254529
Lei Liu98204151163
Lixia Zhang9335147817
Zhongwei Chen9251133700
Wei Chen9093835799
Zhiguo Ding8881735162
Xiaolong Wang8196631455
Junhua Li7748021626
Jiujun Zhang7627639624
Lei Liao7527618815
Peng Xu75115125005
Wei Wang75116723558
Tony D. James7343521605
Network Information
Related Institutions (5)
Nankai University
51.8K papers, 1.1M citations

93% related

Xiamen University
54.4K papers, 1M citations

90% related

Dalian University of Technology
71.9K papers, 1.1M citations

89% related

Nanjing University
105.5K papers, 2.2M citations

89% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202349
2022173
20211,281
20201,042
2019987
2018818