scispace - formally typeset
Search or ask a question
Institution

Henan Normal University

EducationXinxiang, China
About: Henan Normal University is a education organization based out in Xinxiang, China. It is known for research contribution in the topics: Catalysis & Ionic liquid. The organization has 10863 authors who have published 11077 publications receiving 166773 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a novel nanocage-based N-rich LMOF (LCU-103) has been constructed and characterized, which contains abundant N functional sites anchoring on both the windows of nanocages and the inner channels of the framework that can interact with metal ions.
Abstract: Luminescent metal-organic frameworks (LMOFs) as sensors showing highly efficient detection toward toxic heavy-metal ions are in high demand for human health and environmental protection. A novel nanocage-based N-rich LMOF (LCU-103) has been constructed and characterized. It is a 2-fold interpenetrating structure built from N-rich {Zn6(dttz)4} nanocages extended by N-donor ligand Hdpa [H3dttz = 4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole; Hdpa = 4,4'-dipyridylamine]. Notably, LCU-103 contains abundant N functional sites anchoring on both the windows of nanocages and the inner channels of the framework that can interact with metal ions and then recognize them. As a result, it can serve as a luminescent sensing material for detecting trace amounts of Fe3+ and Cu2+ ions with low limits of detection (LODs) of 1.45 and 1.66 μM, respectively, through a luminescent quenching mechanism. Meanwhile, LCU-103 as a LMOF sensor exhibits several advantages such as high sensitivity, appropriate selectivity (for Fe3+ in H2O), recycling stability, and fast response times in N,N-dimethylformamide. Moreover, LCU-103 also displays good luminescent quenching activity toward Fe3+ in H2O and a simulated 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid biological system with low LODs of 1.51 and 1.52 μM, respectively. LCU-103 test papers were further prepared to offer easy and real-time detection of Fe3+ and Cu2+ ions. Importantly, when density functional theory calculations and multiple experimental evidence, including X-ray photoelectron spectroscopy, UV-vis absorption, luminescence decay lifetimes, and quantum efficiencies, are combined, a preferred N-donor site and possible weak interaction sensing mechanism is also proposed to elucidate the quenching effect.

82 citations

Journal ArticleDOI
TL;DR: It is suggested that historical usage of lindane and technical DDT was the main reason for OCP residues in the sediments from both rivers and lakes, and the composition of DDTs reflected fresh inputs of dicofol mixture in this region.

82 citations

Journal ArticleDOI
TL;DR: In this article, the photocatalytic efficiency of Zr-doped TiO{sub 2} nanotubes was investigated with Rhodamine B as the model pollutant.

82 citations

Journal ArticleDOI
Fang Xu1, Chen Huimin1, Chaoya Xu1, Dapeng Wu1, Zhiyong Gao1, Qian Zhang1, Kai Jiang1 
01 Sep 2018
TL;DR: The photocatalytic ratio of Cr(VI) reduction for BWO-3 reached to ∼99.5% after 100 min visible light irradiation, which was higher than that of BWO (∼78%) as mentioned in this paper.
Abstract: Bi2WO6 porous nanosheets (PNS) with different thickness were synthesized via one-pot hydrothermal method. The thickness of Bi2WO6 nanosheets could be well controlled from ∼27 nm to ∼16 nm by adjusting the precursor concentration. In addition, the PNS exhibited porous structures, high surface area and high lattice coherence, which increased the number of catalytic sites and facilitated the charge migration within the sheet structure. The Cr(VI) reduction experiments showed that the photocatalytic activity was greatly affected by the thickness of the product and the optimal photocatalytic activity under visible light irradiation was achieved by BWO-3 with thickness of ∼18 nm. The photocatalytic ratio of Cr(VI) reduction for BWO-3 reached to ∼99.5% after 100 min visible light irradiation, which was higher than that of BWO (∼78%). Based on the optical and electrochemical measurements, BWO-3 had upshifted conduction band of 0.05 V, prolonged carriers’ lifetime of 2.03 ns and decreased carriers' recombination efficiency compared to BWO. These results endowed BWO-3 with high photoreduction ability, increased transfer and separation efficiency of carriers, and thus enhanced the photoreduction activity.

82 citations


Authors

Showing all 10953 results

NameH-indexPapersCitations
Hua Zhang1631503116769
Jie Wu112153756708
Peng Wang108167254529
Lei Liu98204151163
Lixia Zhang9335147817
Zhongwei Chen9251133700
Wei Chen9093835799
Zhiguo Ding8881735162
Xiaolong Wang8196631455
Junhua Li7748021626
Jiujun Zhang7627639624
Lei Liao7527618815
Peng Xu75115125005
Wei Wang75116723558
Tony D. James7343521605
Network Information
Related Institutions (5)
Nankai University
51.8K papers, 1.1M citations

93% related

Xiamen University
54.4K papers, 1M citations

90% related

Dalian University of Technology
71.9K papers, 1.1M citations

89% related

Nanjing University
105.5K papers, 2.2M citations

89% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202349
2022173
20211,281
20201,042
2019987
2018818