scispace - formally typeset
Search or ask a question
Institution

Henan University of Technology

EducationZhengzhou, China
About: Henan University of Technology is a education organization based out in Zhengzhou, China. It is known for research contribution in the topics: Catalysis & Starch. The organization has 7648 authors who have published 6503 publications receiving 73067 citations. The organization is also known as: Hénán Gōngyè Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: By combining photocatalytic with electrochemical process, a significantly synergetic effect on ammonia degradation was observed with Na2SO4 as supporting electrolyte at pH10.7 and an enhanced degradation of ammonia using TiNT electrode fabricated in fluorinated organic solution was confirmed.
Abstract: TiO 2 nanotube (TiNT) electrodes anodized in fluorinated organic solutions were successfully prepared on Ti sheets. Field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were performed to characterize the TiNT electrodes. The linear voltammetry results under irradiation showed that the TiNT electrode annealed at 450°C presented the highest photoelectrochemical activity. By combining photocatalytic with electrochemical process, a significantly synergetic effect on ammonia degradation was observed with Na 2 SO 4 as supporting electrolyte at pH 10.7. Furthermore, the photoelectrocatalytic efficiency on the ammonia degradation was greatly enhanced in presence of chloride ions without the limitation of pH. The degradation rate was improved by 14.8 times reaching 4.98 × 10 − 2 min − 1 at pH 10.7 and a faster degradation rate of 6.34 × 10 − 2 min − 1 was obtained at pH 3.01. The in situ photoelectrocatalytic generated active chlorine was proposed to be responsible for the improved efficiency. On the other hand, an enhanced degradation of ammonia using TiNT electrode fabricated in fluorinated organic solution was also confirmed compared to TiNT electrode anodized in fluorinated water solution and TiO 2 film electrode fabricated by sol–gel method. Finally, the effect of chloride concentration was also discussed.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the crystal structure, the electronic structure and the mechanical properties were investigated for (CrB2)nCrAl with n = 1, 2, 3 by using the all-electron projector augmented wave method with the Perdew-Burke Ernzerhof functional.

27 citations

Journal ArticleDOI
TL;DR: The results suggested that ultrasound is a useful tool to induce the conformational changes to modify the interfacial association between protein-oil phases, thereby improving the emulsifying properties of peanut protein.
Abstract: Background With an increasing demand for edible protein, research on new extraction methods is attracting more attention. The effects of such methods on functional properties are important. The present study aimed to evaluate the effect of ultrasound-assisted extraction on the extraction efficiency, structure, and the emulsifying properties of peanut protein isolate (PPI). Results Ultrasound-assisted extraction significantly improved extraction efficiency and shortened the processing time. The nanostructure, molecular weight distribution, and particle size of PPI were altered by ultrasound-assisted extraction. The emulsifying properties of the PPI from ultrasound-assisted extraction were significantly improved compared with alkaline extraction. Peanut protein isolate had lower molecular weight fractions, higher levels of hydrophobic amino acids, and the highest fluorescence intensity with ultrasound intensity, temperature, and time of 3.17 W cm-3 , 35 °C, and 30 min, respectively. These contributed to the higher emulsifying activity index and emulsifying stability index of the PPI emulsions. The uniform distribution of droplets and smaller particle size of the PPI emulsions was also observed. Conclusion The results suggested that ultrasound can be used to induce the conformational changes to modify the interfacial association between protein-oil phases, thereby improving the emulsifying properties of peanut protein. © 2020 Society of Chemical Industry.

27 citations

Journal ArticleDOI
TL;DR: This paper puts forward a quantitative measure of coherence by following the axiomatic definition of coherent measures introduced in Baumgratz et al. (2014), based on fidelity and analytically computable for arbitrary states of a qubit.
Abstract: Quantifying coherence is an essential endeavor for both quantum foundations and quantum technologies. In this paper, we put forward a quantitative measure of coherence by following the axiomatic definition of coherence measures introduced in Baumgratz et al. (Phys Rev Lett 113:140401, 2014). Our measure is based on fidelity and analytically computable for arbitrary states of a qubit. As one of its applications, we show that our measure can be used to examine whether a pure qubit state can be transformed into another pure or mixed qubit state only by incoherent operations.

27 citations

Journal ArticleDOI
TL;DR: Gamma irradiation is a promising method to improve the safety and economy of moderately fungi-damaged soybean used for feedstuff.

27 citations


Authors

Showing all 7708 results

NameH-indexPapersCitations
Xin Li114277871389
Yang Liu82169533657
Qing-Hua Qin525059939
Dong-Qing Wei484187839
Feng Qi4758110687
Jian Jian Li461197577
Hongshun Yang461655539
Shuangqiang Chen41735539
Fei Xu403146102
Dennis R. Salahub391329259
Lingbo Qu372914894
Yuting Wang378011820
Zhiyong Jiang361353559
Baoping Tang31832455
Jinliang Liu301072317
Network Information
Related Institutions (5)
Jiangnan University
29K papers, 450.1K citations

88% related

South China University of Technology
69.4K papers, 1.2M citations

88% related

Southwest University
27.7K papers, 409.4K citations

86% related

Zhengzhou University
50.3K papers, 668.6K citations

85% related

Zhejiang University of Technology
25.2K papers, 336.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202325
2022128
2021799
2020670
2019574
2018452