scispace - formally typeset
Search or ask a question
Institution

Henan University of Technology

EducationZhengzhou, China
About: Henan University of Technology is a education organization based out in Zhengzhou, China. It is known for research contribution in the topics: Catalysis & Chemistry. The organization has 7648 authors who have published 6503 publications receiving 73067 citations. The organization is also known as: Hénán Gōngyè Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: To control the oxidation in chicken fat by immobilized lipoxygenase (LOX), Maillard reaction products with chicken flavor were prepared and analyzed for flavor mechanism and aromatic effects of oxidized chicken fat on flaxseed derived MRPs.

49 citations

Journal ArticleDOI
TL;DR: The results provide the foundation to target the functional benefits of L. plantarum-fermented kiwifruit pulp for further human, animal, and plant health applications.
Abstract: Background Changes in antioxidant activity of fruit during fermentation are related to changes in the composition of phenolic acids and flavonoids. In this study, we investigated the effects of Lactobacillus plantarum on the phenolic profile, antioxidant activities, and metabolites of kiwifruit pulp. Results Lactobacillus plantarum fermentation increased scavenging activity of 1-diphenyl-2-picrylhydrazyl (DPPH) and 2,20-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radicals. The content of phenolics and flavonoids was increased after fermentation. Correlation analysis demonstrated that the phenolic and flavonoid content was responsible for increasing the scavenging activities of DPPH and ABTS. Lactobacillus plantarum influenced the phenolic profile of the pulp. Protocatechuic and chlorogenic acids were the predominant phenolic acids in fermented kiwifruit pulp. Gallic acid, chlorogenic acid, epicatechin, and catechins were degraded by L. plantarum. The content of 6,7-dihydroxy coumarin and p-coumaric acid, and especially protocatechuic acid, was increased by fermentation. Metabolic differences in lactic acid, fructose, phosphoric acid, gluconolactone, and sugar were evident between non-fermented and fermented kiwifruit. Conclusion Lactobacillus plantarum fermentation increased antioxidant compounds and antioxidant activity in kiwifruit pulp. These results provide the foundation to target the functional benefits of L. plantarum-fermented kiwifruit pulp for further human, animal, and plant health applications. © 2020 Society of Chemical Industry.

49 citations

Journal ArticleDOI
TL;DR: This review gives a systematic understanding about HMCS for the better utilization in food industry and summarizes the modulation of HMCS in dough rheology and final food products' quality.

49 citations

Journal ArticleDOI
TL;DR: It is demonstrated that B-Fe3O4NPs disturb the process of autophagy in HUVECs, and eventually lead to endothelial dysfunction and inflammation.

49 citations

Journal ArticleDOI
TL;DR: Insight is provided into the binding and structural-dynamics changes resulting from novel mutations in the RBD and NTD and the need for further in vitro and in vivo studies is suggested to facilitate the development of possible therapies for new variants of SARS-CoV-2.
Abstract: Continuing reports of new SARS-CoV-2 variants have caused worldwide concern and created a challenging situation for clinicians. The recently reported variant B.1.618, which possesses the E484K mutation specific to the receptor-binding domain (RBD), as well as two deletions of Tyr145 and His146 at the N-terminal binding domain (NTD) of the spike protein, must be studied in depth to devise new therapeutic options. Structural variants reported in the RBD and NTD may play essential roles in the increased pathogenicity of this SARS-CoV-2 new variant. We explored the binding differences and structural-dynamic features of the B.1.618 variant using structural and biomolecular simulation approaches. Our results revealed that the E484K mutation in the RBD slightly altered the binding affinity through affecting the hydrogen bonding network. We also observed that the flexibility of three important loops in the RBD required for binding was increased, which may improve the conformational optimization and consequently binding of the new variant. Furthermore, we found that deletions of Tyr145 and His146 at the NTD reduced the binding affinity of the monoclonal antibody (mAb) 4A8, and that the hydrogen bonding network was significantly affected consequently. This data show that the new B.1.618 variant is an antibody-escaping variant with slightly altered ACE2–RBD affinity. Moreover, we provide insights into the binding and structural-dynamics changes resulting from novel mutations in the RBD and NTD. Our results suggest the need for further in vitro and in vivo studies that will facilitate the development of possible therapies for new variants such as B.1.618.

49 citations


Authors

Showing all 7708 results

NameH-indexPapersCitations
Xin Li114277871389
Yang Liu82169533657
Qing-Hua Qin525059939
Dong-Qing Wei484187839
Feng Qi4758110687
Jian Jian Li461197577
Hongshun Yang461655539
Shuangqiang Chen41735539
Fei Xu403146102
Dennis R. Salahub391329259
Lingbo Qu372914894
Yuting Wang378011820
Zhiyong Jiang361353559
Baoping Tang31832455
Jinliang Liu301072317
Network Information
Related Institutions (5)
Jiangnan University
29K papers, 450.1K citations

88% related

South China University of Technology
69.4K papers, 1.2M citations

88% related

Southwest University
27.7K papers, 409.4K citations

86% related

Zhengzhou University
50.3K papers, 668.6K citations

85% related

Zhejiang University of Technology
25.2K papers, 336.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202325
2022128
2021799
2020670
2019574
2018452