scispace - formally typeset
Search or ask a question
Institution

Hewlett-Packard

CompanyPalo Alto, California, United States
About: Hewlett-Packard is a company organization based out in Palo Alto, California, United States. It is known for research contribution in the topics: Signal & Substrate (printing). The organization has 34663 authors who have published 59808 publications receiving 1467218 citations. The organization is also known as: Hewlett Packard & Hewlett-Packard Company.


Papers
More filters
Journal ArticleDOI
18 Jun 2016
TL;DR: This work proposes a novel PIM architecture, called PRIME, to accelerate NN applications in ReRAM based main memory, and distinguishes itself from prior work on NN acceleration, with significant performance improvement and energy saving.
Abstract: Processing-in-memory (PIM) is a promising solution to address the "memory wall" challenges for future computer systems. Prior proposed PIM architectures put additional computation logic in or near memory. The emerging metal-oxide resistive random access memory (ReRAM) has showed its potential to be used for main memory. Moreover, with its crossbar array structure, ReRAM can perform matrix-vector multiplication efficiently, and has been widely studied to accelerate neural network (NN) applications. In this work, we propose a novel PIM architecture, called PRIME, to accelerate NN applications in ReRAM based main memory. In PRIME, a portion of ReRAM crossbar arrays can be configured as accelerators for NN applications or as normal memory for a larger memory space. We provide microarchitecture and circuit designs to enable the morphable functions with an insignificant area overhead. We also design a software/hardware interface for software developers to implement various NNs on PRIME. Benefiting from both the PIM architecture and the efficiency of using ReRAM for NN computation, PRIME distinguishes itself from prior work on NN acceleration, with significant performance improvement and energy saving. Our experimental results show that, compared with a state-of-the-art neural processing unit design, PRIME improves the performance by ~2360× and the energy consumption by ~895×, across the evaluated machine learning benchmarks.

1,197 citations

Posted Content
TL;DR: In this paper, a study of social interactions within Twitter reveals that the driver of usage is a sparse and hidden network of connections underlying the declared set of friends and followers, revealing that the linked structures of social networks do not reveal actual interactions among people.
Abstract: Scholars, advertisers and political activists see massive online social networks as a representation of social interactions that can be used to study the propagation of ideas, social bond dynamics and viral marketing, among others. But the linked structures of social networks do not reveal actual interactions among people. Scarcity of attention and the daily rythms of life and work makes people default to interacting with those few that matter and that reciprocate their attention. A study of social interactions within Twitter reveals that the driver of usage is a sparse and hidden network of connections underlying the declared set of friends and followers.

1,151 citations

Book
Donald A. Norman1
01 Oct 1998

1,141 citations

Book ChapterDOI
Wil M. P. van der Aalst1, Wil M. P. van der Aalst2, A Arya Adriansyah1, Ana Karla Alves de Medeiros3, Franco Arcieri4, Thomas Baier5, Tobias Blickle6, Jagadeesh Chandra Bose1, Peter van den Brand, Ronald Brandtjen, Joos C. A. M. Buijs1, Andrea Burattin7, Josep Carmona8, Malu Castellanos9, Jan Claes10, Jonathan Cook11, Nicola Costantini, Francisco Curbera12, Ernesto Damiani13, Massimiliano de Leoni1, Pavlos Delias, Boudewijn F. van Dongen1, Marlon Dumas14, Schahram Dustdar15, Dirk Fahland1, Diogo R. Ferreira16, Walid Gaaloul17, Frank van Geffen18, Sukriti Goel19, CW Christian Günther, Antonella Guzzo20, Paul Harmon, Arthur H. M. ter Hofstede1, Arthur H. M. ter Hofstede2, John Hoogland, Jon Espen Ingvaldsen, Koki Kato21, Rudolf Kuhn, Akhil Kumar22, Marcello La Rosa2, Fabrizio Maria Maggi1, Donato Malerba23, RS Ronny Mans1, Alberto Manuel, Martin McCreesh, Paola Mello24, Jan Mendling25, Marco Montali26, Hamid Reza Motahari-Nezhad9, Michael zur Muehlen27, Jorge Munoz-Gama8, Luigi Pontieri28, Joel Ribeiro1, A Anne Rozinat, Hugo Seguel Pérez, Ricardo Seguel Pérez, Marcos Sepúlveda29, Jim Sinur, Pnina Soffer30, Minseok Song31, Alessandro Sperduti7, Giovanni Stilo4, Casper Stoel, Keith D. Swenson21, Maurizio Talamo4, Wei Tan12, Christopher Turner32, Jan Vanthienen33, George Varvaressos, Eric Verbeek1, Marc Verdonk34, Roberto Vigo, Jianmin Wang35, Barbara Weber36, Matthias Weidlich37, Ton Weijters1, Lijie Wen35, Michael Westergaard1, Moe Thandar Wynn2 
01 Jan 2012
TL;DR: This manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users to increase the maturity of process mining as a new tool to improve the design, control, and support of operational business processes.
Abstract: Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes.

1,135 citations

Journal ArticleDOI
TL;DR: It is shown that it is possible to build a hybrid classifier that will perform at least as well as the best available classifier for any target conditions, and in some cases, the performance of the hybrid actually can surpass that of the best known classifier.
Abstract: In real-world environments it usually is difficult to specify target operating conditions precisely, for example, target misclassification costs. This uncertainty makes building robust classification systems problematic. We show that it is possible to build a hybrid classifier that will perform at least as well as the best available classifier for any target conditions. In some cases, the performance of the hybrid actually can surpass that of the best known classifier. This robust performance extends across a wide variety of comparison frameworks, including the optimization of metrics such as accuracy, expected cost, lift, precision, recall, and workforce utilization. The hybrid also is efficient to build, to store, and to update. The hybrid is based on a method for the comparison of classifier performance that is robust to imprecise class distributions and misclassification costs. The ROC convex hull (ROCCH) method combines techniques from ROC analysis, decision analysis and computational geometry, and adapts them to the particulars of analyzing learned classifiers. The method is efficient and incremental, minimizes the management of classifier performance data, and allows for clear visual comparisons and sensitivity analyses. Finally, we point to empirical evidence that a robust hybrid classifier indeed is needed for many real-world problems.

1,134 citations


Authors

Showing all 34676 results

NameH-indexPapersCitations
Andrew White1491494113874
Stephen R. Forrest1481041111816
Rafi Ahmed14663393190
Leonidas J. Guibas12469179200
Chenming Hu119129657264
Robert E. Tarjan11440067305
Hong-Jiang Zhang11246149068
Ching-Ping Wong106112842835
Guillermo Sapiro10466770128
James R. Heath10342558548
Arun Majumdar10245952464
Luca Benini101145347862
R. Stanley Williams10060546448
David M. Blei98378111547
Wei-Ying Ma9746440914
Network Information
Related Institutions (5)
IBM
253.9K papers, 7.4M citations

94% related

Samsung
163.6K papers, 2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Microsoft
86.9K papers, 4.1M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202223
2021240
20201,028
20191,269
2018964