scispace - formally typeset
Search or ask a question
Institution

Hewlett-Packard

CompanyPalo Alto, California, United States
About: Hewlett-Packard is a company organization based out in Palo Alto, California, United States. It is known for research contribution in the topics: Signal & Layer (electronics). The organization has 34663 authors who have published 59808 publications receiving 1467218 citations. The organization is also known as: Hewlett Packard & Hewlett-Packard Company.


Papers
More filters
Journal ArticleDOI
16 Jan 1998-Science
TL;DR: In situ scanning tunneling microscopy revealed that the smaller square-based pyramids transform abruptly during growth to significantly larger multifaceted domes, and that few structures with intermediate size and shape remain.
Abstract: Chemical vapor deposition of germanium onto the silicon (001) surface at atmospheric pressure and 600 degrees Celsius has previously been shown to produce distinct families of smaller (up to 6 nanometers high) and larger (all approximately 15 nanometers high) nanocrystals. Under ultrahigh-vacuum conditions, physical vapor deposition at approximately the same substrate temperature and growth rate produced a similar bimodal size distribution. In situ scanning tunneling microscopy revealed that the smaller square-based pyramids transform abruptly during growth to significantly larger multifaceted domes, and that few structures with intermediate size and shape remain. Both nanocrystal shapes have size-dependent energy minima that result from the interplay between strain relaxation at the facets and stress concentration at the edges. A thermodynamic model similar to a phase transition accounts for this abrupt morphology change.

736 citations

Journal ArticleDOI
08 Feb 2018
TL;DR: It is shown that a diffusive memristor based on silver nanoparticles in a dielectric film can be used to create an artificial neuron with stochastic leaky integrate-and-fire dynamics and tunable integration time, which is determined by silver migration alone or its interaction with circuit capacitance.
Abstract: Neuromorphic computers comprised of artificial neurons and synapses could provide a more efficient approach to implementing neural network algorithms than traditional hardware. Recently, artificial neurons based on memristors have been developed, but with limited bio-realistic dynamics and no direct interaction with the artificial synapses in an integrated network. Here we show that a diffusive memristor based on silver nanoparticles in a dielectric film can be used to create an artificial neuron with stochastic leaky integrate-and-fire dynamics and tunable integration time, which is determined by silver migration alone or its interaction with circuit capacitance. We integrate these neurons with nonvolatile memristive synapses to build fully memristive artificial neural networks. With these integrated networks, we experimentally demonstrate unsupervised synaptic weight updating and pattern classification.

733 citations

Journal ArticleDOI
TL;DR: This article identifies key challenges facing optimistic replication systems---ordering operations, detecting and resolving conflicts, propagating changes efficiently, and bounding replica divergence---and provides a comprehensive survey of techniques developed for addressing these challenges.
Abstract: Data replication is a key technology in distributed systems that enables higher availability and performance. This article surveys optimistic replication algorithms. They allow replica contents to diverge in the short term to support concurrent work practices and tolerate failures in low-quality communication links. The importance of such techniques is increasing as collaboration through wide-area and mobile networks becomes popular.Optimistic replication deploys algorithms not seen in traditional “pessimistic” systems. Instead of synchronous replica coordination, an optimistic algorithm propagates changes in the background, discovers conflicts after they happen, and reaches agreement on the final contents incrementally.We explore the solution space for optimistic replication algorithms. This article identifies key challenges facing optimistic replication systems---ordering operations, detecting and resolving conflicts, propagating changes efficiently, and bounding replica divergence---and provides a comprehensive survey of techniques developed for addressing these challenges.

733 citations

Journal ArticleDOI
13 Nov 2003-Nature
TL;DR: The results indicate that the hybrid organic/inorganic memory device is a reliable means for achieving rapid, large-scale archival data storage for ultralow-cost permanent storage of digital images, eliminating the need for slow, bulky and expensive mechanical drives used in conventional magnetic and optical memories.
Abstract: Organic devices promise to revolutionize the extent of, and access to, electronics by providing extremely inexpensive, lightweight and capable ubiquitous components that are printed onto plastic, glass or metal foils1,2,3. One key component of an electronic circuit that has thus far received surprisingly little attention is an organic electronic memory. Here we report an architecture for a write-once read-many-times (WORM) memory, based on the hybrid integration of an electrochromic polymer with a thin-film silicon diode deposited onto a flexible metal foil substrate. WORM memories are desirable for ultralow-cost permanent storage of digital images, eliminating the need for slow, bulky and expensive mechanical drives used in conventional magnetic and optical memories. Our results indicate that the hybrid organic/inorganic memory device is a reliable means for achieving rapid, large-scale archival data storage. The WORM memory pixel exploits a mechanism of current-controlled, thermally activated un-doping of a two-component electrochromic conducting polymer.

731 citations

Journal ArticleDOI
19 Oct 2003
TL;DR: The goal is to design tools that enable modestly-skilled programmers to isolate performance bottlenecks in distributed systems composed of black-box nodes by developing two very different algorithms for inferring the dominant causal paths through a distributed system from these traces.
Abstract: Many interesting large-scale systems are distributed systems of multiple communicating components. Such systems can be very hard to debug, especially when they exhibit poor performance. The problem becomes much harder when systems are composed of "black-box" components: software from many different (perhaps competing) vendors, usually without source code available. Typical solutions-provider employees are not always skilled or experienced enough to debug these systems efficiently. Our goal is to design tools that enable modestly-skilled programmers (and experts, too) to isolate performance bottlenecks in distributed systems composed of black-box nodes.We approach this problem by obtaining message-level traces of system activity, as passively as possible and without any knowledge of node internals or message semantics. We have developed two very different algorithms for inferring the dominant causal paths through a distributed system from these traces. One uses timing information from RPC messages to infer inter-call causality; the other uses signal-processing techniques. Our algorithms can ascribe delay to specific nodes on specific causal paths. Unlike previous approaches to similar problems, our approach requires no modifications to applications, middleware, or messages.

724 citations


Authors

Showing all 34676 results

NameH-indexPapersCitations
Andrew White1491494113874
Stephen R. Forrest1481041111816
Rafi Ahmed14663393190
Leonidas J. Guibas12469179200
Chenming Hu119129657264
Robert E. Tarjan11440067305
Hong-Jiang Zhang11246149068
Ching-Ping Wong106112842835
Guillermo Sapiro10466770128
James R. Heath10342558548
Arun Majumdar10245952464
Luca Benini101145347862
R. Stanley Williams10060546448
David M. Blei98378111547
Wei-Ying Ma9746440914
Network Information
Related Institutions (5)
IBM
253.9K papers, 7.4M citations

94% related

Samsung
163.6K papers, 2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Microsoft
86.9K papers, 4.1M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202223
2021240
20201,028
20191,269
2018964