scispace - formally typeset
Search or ask a question
Institution

Hewlett-Packard

CompanyPalo Alto, California, United States
About: Hewlett-Packard is a company organization based out in Palo Alto, California, United States. It is known for research contribution in the topics: Signal & Layer (electronics). The organization has 34663 authors who have published 59808 publications receiving 1467218 citations. The organization is also known as: Hewlett Packard & Hewlett-Packard Company.


Papers
More filters
Proceedings ArticleDOI
12 Dec 1999
TL;DR: This paper describes the design, implementation, and performance of the Elephant file system, which automatically retains all important versions of user files and contrasts with checkpointing file systems such as Plan-9, AFS, and WAFL that periodically generate efficient checkpoints of entire file systems.
Abstract: Modern file systems associate the deletion of a file with the immediate release of storage, and file writes with the irrevocable change of file contents. We argue that this behavior is a relic of the past, when disk storage was a scarce resource. Today, large cheap disks make it possible for the file system to protect valuable data from accidental delete or overwrite.This paper describes the design, implementation, and performance of the Elephant file system, which automatically retains all important versions of user files. Users name previous file versions by combining a traditional pathname with a time when the desired version of a file or directory existed. Storage in Elephant is managed by the system using file-grain user-specified retention policies. This approach contrasts with checkpointing file systems such as Plan-9, AFS, and WAFL that periodically generate efficient checkpoints of entire file systems and thus restrict retention to be guided by a single policy for all files within that file system.Elephant is implemented as a new Virtual File System in the FreeBSD kernel.

453 citations

Proceedings Article
09 Dec 2003
TL;DR: This paper suggests an alternative procedure to the Fisher kernel for systematically finding kernel functions that naturally handle variable length sequence data in multimedia domains and derives a kernel distance based on the Kullback-Leibler (KL) divergence between generative models.
Abstract: Over the last years significant efforts have been made to develop kernels that can be applied to sequence data such as DNA, text, speech, video and images. The Fisher Kernel and similar variants have been suggested as good ways to combine an underlying generative model in the feature space and discriminant classifiers such as SVM's. In this paper we suggest an alternative procedure to the Fisher kernel for systematically finding kernel functions that naturally handle variable length sequence data in multimedia domains. In particular for domains such as speech and images we explore the use of kernel functions that take full advantage of well known probabilistic models such as Gaussian Mixtures and single full covariance Gaussian models. We derive a kernel distance based on the Kullback-Leibler (KL) divergence between generative models. In effect our approach combines the best of both generative and discriminative methods and replaces the standard SVM kernels. We perform experiments on speaker identification/verification and image classification tasks and show that these new kernels have the best performance in speaker verification and mostly outperform the Fisher kernel based SVM's and the generative classifiers in speaker identification and image classification.

453 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond.
Abstract: Integrated quantum photonic technologies are key for future applications in quantum information, ultralow-power opto-electronics and sensing. As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their long-lived electron and nuclear spin coherence, and capability for individual optical initialization, readout and information storage. The major outstanding hurdle lies in interconnecting many nitrogen vacancies for large-scale computation. One of the most promising approaches in this regard is to couple them to optical resonators, which can be further interconnected in a photonic network. Here, we demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond. Zero-phonon line enhancement by more than a factor of 10 is estimated from lifetime measurements. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics.

452 citations

Proceedings Article
25 Apr 2012
TL;DR: Jellyfish as mentioned in this paper is a high-capacity network interconnect which, by adopting a random graph topology, yields itself naturally to incremental expansion, supporting as many as 25% more servers at full capacity using the same equipment at the scale of a few thousand nodes, and this advantage improves with scale.
Abstract: Industry experience indicates that the ability to incrementally expand data centers is essential. However, existing high-bandwidth network designs have rigid structure that interferes with incremental expansion. We present Jellyfish, a high-capacity network interconnect which, by adopting a random graph topology, yields itself naturally to incremental expansion. Somewhat surprisingly, Jellyfish is more cost-efficient than a fat-tree, supporting as many as 25% more servers at full capacity using the same equipment at the scale of a few thousand nodes, and this advantage improves with scale. Jellyfish also allows great flexibility in building networks with different degrees of oversubscription. However, Jellyfish's unstructured design brings new challenges in routing, physical layout, and wiring. We describe approaches to resolve these challenges, and our evaluation suggests that Jellyfish could be deployed in today's data centers.

452 citations


Authors

Showing all 34676 results

NameH-indexPapersCitations
Andrew White1491494113874
Stephen R. Forrest1481041111816
Rafi Ahmed14663393190
Leonidas J. Guibas12469179200
Chenming Hu119129657264
Robert E. Tarjan11440067305
Hong-Jiang Zhang11246149068
Ching-Ping Wong106112842835
Guillermo Sapiro10466770128
James R. Heath10342558548
Arun Majumdar10245952464
Luca Benini101145347862
R. Stanley Williams10060546448
David M. Blei98378111547
Wei-Ying Ma9746440914
Network Information
Related Institutions (5)
IBM
253.9K papers, 7.4M citations

94% related

Samsung
163.6K papers, 2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Microsoft
86.9K papers, 4.1M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202223
2021240
20201,028
20191,269
2018964