scispace - formally typeset
Search or ask a question
Institution

Hewlett-Packard

CompanyPalo Alto, California, United States
About: Hewlett-Packard is a company organization based out in Palo Alto, California, United States. It is known for research contribution in the topics: Signal & Substrate (printing). The organization has 34663 authors who have published 59808 publications receiving 1467218 citations. The organization is also known as: Hewlett Packard & Hewlett-Packard Company.


Papers
More filters
Journal ArticleDOI
01 May 1996
TL;DR: The overall design of a system that implements the preprocessing, clustering, and dynamic link suggestion tasks is described, and some experimental results generated by analyzing the access log of a web site.
Abstract: This paper describes an approach for automatically classifying visitors of a web site according to their access patterns. User access logs are examined to discover clusters of users that exhibit similar information needs; e.g., users that access similar pages. This may result in a better understanding of how users visit the site, and lead to an improved organization of the hypertext documents for navigational convenience. More interestingly, based on what categories an individual user falls into, we can dynamically suggest links for him to navigate. In this paper, we describe the overall design of a system that implements these ideas, and elaborate on the preprocessing, clustering, and dynamic link suggestion tasks. We present some experimental results generated by analyzing the access log of a web site.

452 citations

Book ChapterDOI
TL;DR: This paper reviews a number of recently available techniques in content analysis of visual media and their application to the indexing, retrieval, abstracting, relevance assessment, interactive perception, annotation and re-use of visual documents.
Abstract: This paper reviews a number of recently available techniques in content analysis of visual media and their application to the indexing, retrieval, abstracting, relevance assessment, interactive perception, annotation and re-use of visual documents.

451 citations

Journal ArticleDOI
TL;DR: A procedure to qualitatively measure the saliency of a feature towards a classification problem based on the plot of the intra-class and inter-class distance distributions and determines that the edge direction-based features have the most discriminative power for the classification problem of interest here.

450 citations

Journal ArticleDOI
TL;DR: A general statistical model is presented here for performance degradation of an item of equipment and it is taken to be a Wiener diffusion process with a time scale transformation.
Abstract: Engineering degradation tests allow industry to assess the potential life span of long-life products that do not fail readily under accelerated conditions in life tests. A general statistical model is presented here for performance degradation of an item of equipment. The degradation process in the model is taken to be a Wiener diffusion process with a time scale transformation. The model incorporates Arrhenius extrapolation for high stress testing. The lifetime of an item is defined as the time until performance deteriorates to a specified failure threshold. The model can be used to predict the lifetime of an item or the extent of degradation of an item at a specified future time. Inference methods for the model parameters, based on accelerated degradation test data, are presented. The model and inference methods are illustrated with a case application involving self-regulating heating cables. The paper also discusses a number of practical issues encountered in applications.

449 citations

Journal ArticleDOI
TL;DR: This work shows that all one-sided two-party computations (which allow only one of the two parties to learn the result) are necessarily insecure, and constructs a class of functions that cannot be computed securely in any two-sidedTwo-party computation.
Abstract: It had been widely claimed that quantum mechanics can protect private information during public decision in, for example, the so-called two-party secure computation. If this were the case, quantum smart-cards, storing confidential information accessible only to a proper reader, could prevent fake teller machines from learning the PIN (personal identification number) from the customers' input. Although such optimism has been challenged by the recent surprising discovery of the insecurity of the so-called quantum bit commitment, the security of quantum two-party computation itself remains unaddressed. Here I answer this question directly by showing that all one-sided two-party computations (which allow only one of the two parties to learn the result) are necessarily insecure. As corollaries to my results, quantum one-way oblivious password identification and the so-called quantum one-out-of-two oblivious transfer are impossible. I also construct a class of functions that cannot be computed securely in any two-sided two-party computation. Nevertheless, quantum cryptography remains useful in key distribution and can still provide partial security in ``quantum money'' proposed by Wiesner.

448 citations


Authors

Showing all 34676 results

NameH-indexPapersCitations
Andrew White1491494113874
Stephen R. Forrest1481041111816
Rafi Ahmed14663393190
Leonidas J. Guibas12469179200
Chenming Hu119129657264
Robert E. Tarjan11440067305
Hong-Jiang Zhang11246149068
Ching-Ping Wong106112842835
Guillermo Sapiro10466770128
James R. Heath10342558548
Arun Majumdar10245952464
Luca Benini101145347862
R. Stanley Williams10060546448
David M. Blei98378111547
Wei-Ying Ma9746440914
Network Information
Related Institutions (5)
IBM
253.9K papers, 7.4M citations

94% related

Samsung
163.6K papers, 2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Microsoft
86.9K papers, 4.1M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202223
2021240
20201,028
20191,269
2018964