scispace - formally typeset
Search or ask a question
Institution

Hewlett-Packard

CompanyPalo Alto, California, United States
About: Hewlett-Packard is a company organization based out in Palo Alto, California, United States. It is known for research contribution in the topics: Signal & Substrate (printing). The organization has 34663 authors who have published 59808 publications receiving 1467218 citations. The organization is also known as: Hewlett Packard & Hewlett-Packard Company.


Papers
More filters
Journal ArticleDOI
01 Sep 2003-Bone
TL;DR: It is demonstrated that the male C57BL/6J mouse is a novel and appropriate model for use in studying endogenous, aging-related osteopenia and may be a useful model for the study of Type II osteoporosis.

310 citations

Patent
29 Mar 1996
TL;DR: In this article, the authors propose an approach for real-time sharing of distributed applications based on a fundamental window hierarchical mapping and user interactions, which is event driven with agent assistance.
Abstract: A new application sharing technology that enables sharing of many single-user non-modified applications between two or more workstations. It provides concurrent sharing of existing multiple applications with no change in a distributed environment. It permits real-time sharing of distributed applications based on a fundamental window hierarchical mapping and user interactions. Control is centralized but the data and program are replicated. It is event driven with agent assistance. The new event capturing capability is automatically triggered by user interactions on entering/leaving the shared window. The event capturing capability starts when the user moves the pointer into the shared windows. The event capturing ends when the user moves the pointer out of the shared windows. The new multicasting scope is defined in a shared window hierarchy data array. This global data array is dynamically created at run time on an as-needed basis. Because this mechanism only processes user input events such as mouse, keyboard or cursor movement (commands), no output graphic data transmission across the network is required. Therefore, this approach is extremely light-weight and provides secure transmission without requiring intensive encryption. Because it is not using pseudo server interception, this approach can support DHA 3-D rendering. Also, the agent can dynamically mediate resources and normalize environment differences. This permits real-time sharing of 3-D, graphic and DHA (direct hardware access) applications. DHA permits the application to bypass the windowing server to render graphics on display. Moreover, because it is extremely light-weight, high network bandwidth is not required.

309 citations

Journal ArticleDOI
Ruby B. Lee1
TL;DR: A software video decoder attains MPEG video and audio decompression and playback at real-time rates of 30 frames per second, on an entry-level workstation, with general-purpose parallel subword instructions that can accelerate a variety of multimedia programs.
Abstract: A minimalistic set of multimedia introductions introduced into PA-RISC microprocessors implements SUID-MIMD parallelism with insignificant changes to the underlying microprocessor. Thus, a software video decoder attains MPEG video and audio decompression and playback at real-time rates of 30 frames per second, on an entry-level workstation. Our general-purpose parallel subword instructions can accelerate a variety of multimedia programs. >

306 citations

Patent
Barry Bronson1
07 May 1993
TL;DR: In this article, a computer display interface which simulates familiar document handling activities based upon a unique display metaphor representative of a standard office filing system and work area of a desk is presented.
Abstract: A novel computer display interface which simulates familiar document handling activities based upon a unique display metaphor representative of a standard office filing system and work area of a desk. The display system includes multi-windows which are displayed in a central screen area designated for just active computer windows. The interface further includes designating the edge areas of the screen for displaying window tabs of inactive windows. The window tabs are arranged in a way to simulate an integrated filing system, and to provide a convenient method of organizing and viewing computer files.

306 citations

Journal ArticleDOI
TL;DR: In this paper, a new route for distributed optical quantum information processing (QIP) based on generalized quantum non-demolition measurements is presented, providing a unified approach for quantum communication and computing.
Abstract: Quantum information processing (QIP) offers the promise of being able to do things that we cannot do with conventional technology. Here we present a new route for distributed optical QIP, based on generalized quantum non-demolition measurements, providing a unified approach for quantum communication and computing. Interactions between photons are generated using weak nonlinearities and intense laser fields—the use of such fields provides for robust distribution of quantum information. Our approach only requires a practical set of resources, and it uses these very efficiently. Thus it promises to be extremely useful for the first quantum technologies, based on scarce resources. Furthermore, in the longer term this approach provides both options and scalability for efficient many-qubit QIP.

305 citations


Authors

Showing all 34676 results

NameH-indexPapersCitations
Andrew White1491494113874
Stephen R. Forrest1481041111816
Rafi Ahmed14663393190
Leonidas J. Guibas12469179200
Chenming Hu119129657264
Robert E. Tarjan11440067305
Hong-Jiang Zhang11246149068
Ching-Ping Wong106112842835
Guillermo Sapiro10466770128
James R. Heath10342558548
Arun Majumdar10245952464
Luca Benini101145347862
R. Stanley Williams10060546448
David M. Blei98378111547
Wei-Ying Ma9746440914
Network Information
Related Institutions (5)
IBM
253.9K papers, 7.4M citations

94% related

Samsung
163.6K papers, 2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Microsoft
86.9K papers, 4.1M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202223
2021240
20201,028
20191,269
2018964