scispace - formally typeset
Search or ask a question

Showing papers by "Hokkaido University published in 2007"


Journal ArticleDOI
TL;DR: It is recommended that spirometry is required for the clinical diagnosis of COPD to avoid misdiagnosis and to ensure proper evaluation of severity of airflow limitation.
Abstract: Chronic obstructive pulmonary disease (COPD) remains a major public health problem. It is the fourth leading cause of chronic morbidity and mortality in the United States, and is projected to rank fifth in 2020 in burden of disease worldwide, according to a study published by the World Bank/World Health Organization. Yet, COPD remains relatively unknown or ignored by the public as well as public health and government officials. In 1998, in an effort to bring more attention to COPD, its management, and its prevention, a committed group of scientists encouraged the U.S. National Heart, Lung, and Blood Institute and the World Health Organization to form the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Among the important objectives of GOLD are to increase awareness of COPD and to help the millions of people who suffer from this disease and die prematurely of it or its complications. The first step in the GOLD program was to prepare a consensus report, Global Strategy for the Diagnosis, Management, and Prevention of COPD, published in 2001. The present, newly revised document follows the same format as the original consensus report, but has been updated to reflect the many publications on COPD that have appeared. GOLD national leaders, a network of international experts, have initiated investigations of the causes and prevalence of COPD in their countries, and developed innovative approaches for the dissemination and implementation of COPD management guidelines. We appreciate the enormous amount of work the GOLD national leaders have done on behalf of their patients with COPD. Despite the achievements in the 5 years since the GOLD report was originally published, considerable additional work is ahead of us if we are to control this major public health problem. The GOLD initiative will continue to bring COPD to the attention of governments, public health officials, health care workers, and the general public, but a concerted effort by all involved in health care will be necessary.

17,023 citations


Journal ArticleDOI
Sabeeha S. Merchant1, Simon E. Prochnik2, Olivier Vallon3, Elizabeth H. Harris4, Steven J. Karpowicz1, George B. Witman5, Astrid Terry2, Asaf Salamov2, Lillian K. Fritz-Laylin6, Laurence Maréchal-Drouard7, Wallace F. Marshall8, Liang-Hu Qu9, David R. Nelson10, Anton A. Sanderfoot11, Martin H. Spalding12, Vladimir V. Kapitonov13, Qinghu Ren, Patrick J. Ferris14, Erika Lindquist2, Harris Shapiro2, Susan Lucas2, Jane Grimwood15, Jeremy Schmutz15, Pierre Cardol3, Pierre Cardol16, Heriberto Cerutti17, Guillaume Chanfreau1, Chun-Long Chen9, Valérie Cognat7, Martin T. Croft18, Rachel M. Dent6, Susan K. Dutcher19, Emilio Fernández20, Hideya Fukuzawa21, David González-Ballester22, Diego González-Halphen23, Armin Hallmann, Marc Hanikenne16, Michael Hippler24, William Inwood6, Kamel Jabbari25, Ming Kalanon26, Richard Kuras3, Paul A. Lefebvre11, Stéphane D. Lemaire27, Alexey V. Lobanov17, Martin Lohr28, Andrea L Manuell29, Iris Meier30, Laurens Mets31, Maria Mittag32, Telsa M. Mittelmeier33, James V. Moroney34, Jeffrey L. Moseley22, Carolyn A. Napoli33, Aurora M. Nedelcu35, Krishna K. Niyogi6, Sergey V. Novoselov17, Ian T. Paulsen, Greg Pazour5, Saul Purton36, Jean-Philippe Ral7, Diego Mauricio Riaño-Pachón37, Wayne R. Riekhof, Linda A. Rymarquis38, Michael Schroda, David B. Stern39, James G. Umen14, Robert D. Willows40, Nedra F. Wilson41, Sara L. Zimmer39, Jens Allmer42, Janneke Balk18, Katerina Bisova43, Chong-Jian Chen9, Marek Eliáš44, Karla C Gendler33, Charles R. Hauser45, Mary Rose Lamb46, Heidi K. Ledford6, Joanne C. Long1, Jun Minagawa47, M. Dudley Page1, Junmin Pan48, Wirulda Pootakham22, Sanja Roje49, Annkatrin Rose50, Eric Stahlberg30, Aimee M. Terauchi1, Pinfen Yang51, Steven G. Ball7, Chris Bowler25, Carol L. Dieckmann33, Vadim N. Gladyshev17, Pamela J. Green38, Richard A. Jorgensen33, Stephen P. Mayfield29, Bernd Mueller-Roeber37, Sathish Rajamani30, Richard T. Sayre30, Peter Brokstein2, Inna Dubchak2, David Goodstein2, Leila Hornick2, Y. Wayne Huang2, Jinal Jhaveri2, Yigong Luo2, Diego Martinez2, Wing Chi Abby Ngau2, Bobby Otillar2, Alexander Poliakov2, Aaron Porter2, Lukasz Szajkowski2, Gregory Werner2, Kemin Zhou2, Igor V. Grigoriev2, Daniel S. Rokhsar2, Daniel S. Rokhsar6, Arthur R. Grossman22 
University of California, Los Angeles1, United States Department of Energy2, University of Paris3, Duke University4, University of Massachusetts Medical School5, University of California, Berkeley6, Centre national de la recherche scientifique7, University of California, San Francisco8, Sun Yat-sen University9, University of Tennessee Health Science Center10, University of Minnesota11, Iowa State University12, Genetic Information Research Institute13, Salk Institute for Biological Studies14, Stanford University15, University of Liège16, University of Nebraska–Lincoln17, University of Cambridge18, Washington University in St. Louis19, University of Córdoba (Spain)20, Kyoto University21, Carnegie Institution for Science22, National Autonomous University of Mexico23, University of Münster24, École Normale Supérieure25, University of Melbourne26, University of Paris-Sud27, University of Mainz28, Scripps Research Institute29, Ohio State University30, University of Chicago31, University of Jena32, University of Arizona33, Louisiana State University34, University of New Brunswick35, University College London36, University of Potsdam37, Delaware Biotechnology Institute38, Boyce Thompson Institute for Plant Research39, Macquarie University40, Oklahoma State University Center for Health Sciences41, İzmir University of Economics42, Academy of Sciences of the Czech Republic43, Charles University in Prague44, St. Edward's University45, University of Puget Sound46, Hokkaido University47, Tsinghua University48, Washington State University49, Appalachian State University50, Marquette University51
12 Oct 2007-Science
TL;DR: Analyses of the Chlamydomonas genome advance the understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
Abstract: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

2,554 citations


Journal ArticleDOI
Andrew G. Clark1, Michael B. Eisen2, Michael B. Eisen3, Douglas Smith  +426 moreInstitutions (70)
08 Nov 2007-Nature
TL;DR: These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution.
Abstract: Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.

2,057 citations


Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: The artificial expression of otherwise IFN-inducible DAI (DLM-1/ZBP1) in mouse fibroblasts selectively enhances the DNA-mediated induction of type I IFN and other genes involved in innate immunity, and may offer new insight into the signalling mechanisms underlying DNA-associated antimicrobial immunity and autoimmune disorders.
Abstract: Central to innate immunity is the sensing of pathogen-associated molecular patterns by cytosolic and membrane-associated receptors. In particular, DNA is a potent activator of immune responses during infection or tissue damage, and evidence indicates that, in addition to the membrane-associated Toll-like receptor 9, an unidentified cytosolic DNA sensor(s) can activate type I interferon (IFN) and other immune responses. Here we report on a candidate DNA sensor, previously named DLM-1 (also called Z-DNA binding protein 1 (ZBP1)), for which biological function had remained unknown; we now propose the alternative name DAI (DNA-dependent activator of IFN-regulatory factors). The artificial expression of otherwise IFN-inducible DAI (DLM-1/ZBP1) in mouse fibroblasts selectively enhances the DNA-mediated induction of type I IFN and other genes involved in innate immunity. On the other hand, RNA interference of messenger RNA for DAI (DLM-1/ZBP1) in cells inhibits this gene induction programme upon stimulation by DNA from various sources. Moreover, DAI (DLM-1/ZBP1) binds to double-stranded DNA and, by doing so, enhances its association with the IRF3 transcription factor and the TBK1 serine/threonine kinase. These observations underscore an integral role of DAI (DLM-1/ZBP1) in the DNA-mediated activation of innate immune responses, and may offer new insight into the signalling mechanisms underlying DNA-associated antimicrobial immunity and autoimmune disorders.

1,595 citations


Journal ArticleDOI
TL;DR: Results indicate that the Atg12-Atg5 conjugate is a ubiquitin-protein ligase (E3)-like enzyme for Atg8-PE conjugation reaction, distinctively promoting protein-lipid conjugations.

1,033 citations


Journal ArticleDOI
30 Aug 2007-Nature
TL;DR: It is shown that dominant-negative mutations in the human signal transducer and activator of transcription 3 (STAT3) gene result in the classical multisystem HIES, highlighting the multiple roles played by STAT3 in humans, and underline the critical involvement of multiple cytokine pathways in the pathogenesis of HIES.
Abstract: Hyper-immunoglobulin E syndrome (HIES) is a compound primary immunodeficiency characterized by a highly elevated serum IgE, recurrent staphylococcal skin abscesses and cyst-forming pneumonia, with disproportionately milder inflammatory responses, referred to as cold abscesses, and skeletal abnormalities. Although some cases of familial HIES with autosomal dominant or recessive inheritance have been reported, most cases of HIES are sporadic, and their pathogenesis has remained mysterious for a long time. Here we show that dominant-negative mutations in the human signal transducer and activator of transcription 3 (STAT3) gene result in the classical multisystem HIES. We found that eight out of fifteen unrelated non-familial HIES patients had heterozygous STAT3 mutations, but their parents and siblings did not have the mutant STAT3 alleles, suggesting that these were de novo mutations. Five different mutations were found, all of which were located in the STAT3 DNA-binding domain. The patients' peripheral blood cells showed defective responses to cytokines, including interleukin (IL)-6 and IL-10, and the DNA-binding ability of STAT3 in these cells was greatly diminished. All five mutants were non-functional by themselves and showed dominant-negative effects when co-expressed with wild-type STAT3. These results highlight the multiple roles played by STAT3 in humans, and underline the critical involvement of multiple cytokine pathways in the pathogenesis of HIES.

900 citations


Journal ArticleDOI
TL;DR: HypoFXSRT with a BED of less than 180 Gy was almost safe for stage I NSCLC, and the local control and overall survival rates in 5 years with a AED of 100 Gy or more were superior to the reported results for conventional radiotherapy.

880 citations


Journal ArticleDOI
04 May 2007-Science
TL;DR: An optical phase measurement with an entangled four-photon interference visibility greater than the threshold to beat the standard quantum limit—the limit attainable without entanglement.
Abstract: Precision measurements are important across all fields of science In particular, optical phase measurements can be used to measure distance, position, displacement, acceleration, and optical path length Quantum entanglement enables higher precision than would otherwise be possible We demonstrated an optical phase measurement with an entangled four-photon interference visibility greater than the threshold to beat the standard quantum limit-the limit attainable without entanglement These results open the way for new high-precision measurement applications

666 citations


Journal ArticleDOI
TL;DR: Recent progress in the research of tetrapyrrole biosynthesis from a cellular biological view consists of biochemical, structural, and genetic analyses, which contribute to understanding of how the flow and the synthesis of tetrapeyrrole molecules are regulated and how the potentially toxic intermediates of tetramyrrole synthesis are maintained at low levels.
Abstract: Tetrapyrroles play vital roles in various biological processes, including photosynthesis and respiration. Higher plants contain four classes of tetrapyrroles, namely, chlorophyll, heme, siroheme, and phytochromobilin. All of the tetrapyrroles are derived from a common biosynthetic pathway. Here we review recent progress in the research of tetrapyrrole biosynthesis from a cellular biological view. The progress consists of biochemical, structural, and genetic analyses, which contribute to our understanding of how the flow and the synthesis of tetrapyrrole molecules are regulated and how the potentially toxic intermediates of tetrapyrrole synthesis are maintained at low levels. We also describe interactions of tetrapyrrole biosynthesis and other cellular processes including the stay-green events, the cell-death program, and the plastid-to-nucleus signal transduction. Finally, we present several reports on attempts for agricultural and horticultural applications in which the tetrapyrrole biosynthesis ...

662 citations


Journal ArticleDOI
TL;DR: This review honoring Jobsis highlights the progress that has been made in developing and adapting NIRS and NIR imaging (NIRI) technologies for evaluating skeletal muscle O(2) dynamics and oxidative energy metabolism.
Abstract: Near-infrared spectroscopy (NIRS) was initiated in 1977 by Jobsis as a simple, noninvasive method for measuring the presence of oxygen in muscle and other tissues in vivo. This review honoring Jobsis highlights the progress that has been made in developing and adapting NIRS and NIR imaging (NIRI) technologies for evaluating skeletal muscle O(2) dynamics and oxidative energy metabolism. Development of NIRS/NIRI technologies has included novel approaches to quantification of the signal, as well as the addition of multiple source detector pairs for imaging. Adaptation of NIRS technology has focused on the validity and reliability of NIRS measurements. NIRS measurements have been extended to resting, ischemic, localized exercise, and whole body exercise conditions. In addition, NIRS technology has been applied to the study of a number of chronic health conditions, including patients with chronic heart failure, peripheral vascular disease, chronic obstructive pulmonary disease, varying muscle diseases, spinal cord injury, and renal failure. As NIRS technology continues to evolve, the study of skeletal muscle function with NIRS first illuminated by Jobsis continues to be bright.

583 citations


Journal ArticleDOI
TL;DR: This task group is charged with addressing the issue of radiation dose delivered via image guidance techniques during radiotherapy by compiling an overview of image-guidance techniques and their associated radiation dose levels to enable the design of image guidance regimens that are as effective and efficient as possible.
Abstract: Radiographic image guidance has emerged as the new paradigm for patient positioning, target localization, and external beam alignment in radiotherapy. Although widely varied in modality and method, all radiographic guidance techniques have one thing in common—they can give a significant radiation dose to the patient. As with all medical uses of ionizing radiation, the general view is that this exposure should be carefully managed. The philosophy for dose management adopted by the diagnostic imaging community is summarized by the acronym ALARA, i.e., as low as reasonably achievable. But unlike the general situation with diagnostic imaging and image-guided surgery, image-guided radiotherapy (IGRT) adds the imaging dose to an already high level of therapeutic radiation. There is furthermore an interplay between increased imaging and improved therapeutic dose conformity that suggests the possibility of optimizing rather than simply minimizing the imaging dose. For this reason, the management of imaging dose during radiotherapy is a different problem than its management during routine diagnostic or image-guided surgical procedures. The imaging dose received as part of a radiotherapy treatment has long been regarded as negligible and thus has been quantified in a fairly loose manner. On the other hand, radiation oncologists examine the therapy dose distribution in minute detail. The introduction of more intensive imaging procedures for IGRT now obligates the clinician to evaluate therapeutic and imaging doses in a more balanced manner. This task group is charged with addressing the issue of radiation dose delivered via image guidance techniques during radiotherapy. The group has developed this charge into three objectives: (1) Compile an overview of image-guidance techniques and their associated radiation dose levels, to provide the clinician using a particular set of image guidance techniques with enough data to estimate the total diagnostic dose for a specific treatment scenario, (2) identify ways to reduce the total imaging dose without sacrificing essential imaging information, and (3) recommend optimization strategies to trade off imaging dose with improvements in therapeutic dose delivery. The end goal is to enable the design of image guidance regimens that are as effective and efficient as possible.

Journal ArticleDOI
TL;DR: The results of the present study have revealed that, for most brain metastatic patients, control of the brain tumor is the most important factor for stabilizing neuroc cognitive function, however, the long-term adverse effects of WBRT on neurocognitive function might not be negligible.
Abstract: Purpose To determine how the omission of whole brain radiotherapy (WBRT) affects the neurocognitive function of patients with one to four brain metastases who have been treated with stereotactic radiosurgery (SRS). Methods and Materials In a prospective randomized trial between WBRT+SRS and SRS alone for patients with one to four brain metastases, we assessed the neurocognitive function using the Mini-Mental State Examination (MMSE). Of the 132 enrolled patients, MMSE scores were available for 110. Results In the baseline MMSE analyses, statistically significant differences were observed for total tumor volume, extent of tumor edema, age, and Karnofsky performance status. Of the 92 patients who underwent the follow-up MMSE, 39 had a baseline MMSE score of ≤27 (17 in the WBRT+SRS group and 22 in the SRS-alone group). Improvements of ≥3 points in the MMSEs of 9 WBRT+SRS patients and 11 SRS-alone patients ( p = 0.85) were observed. Of the 82 patients with a baseline MMSE score of ≥27 or whose baseline MMSE score was ≤26 but had improved to ≥27 after the initial brain treatment, the 12-, 24-, and 36-month actuarial free rate of the 3-point drop in the MMSE was 76.1%, 68.5%, and 14.7% in the WBRT+SRS group and 59.3%, 51.9%, and 51.9% in the SRS-alone group, respectively. The average duration until deterioration was 16.5 months in the WBRT+SRS group and 7.6 months in the SRS-alone group ( p = 0.05). Conclusion The results of the present study have revealed that, for most brain metastatic patients, control of the brain tumor is the most important factor for stabilizing neurocognitive function. However, the long-term adverse effects of WBRT on neurocognitive function might not be negligible.

Journal ArticleDOI
TL;DR: The functional community structures (diversity and relative abundance) of major trophic groups were quantitatively analyzed by MAR-FISH and the hitherto unknown metabolic functions of Spirochaeta and candidate phylum of TM7 as well as Synergistes were found to be glucose and acetate utilization.

Journal ArticleDOI
17 May 2007-Nature
TL;DR: The findings revealed that PAR1 is a key target of H. pylori CagA in the disorganization of gastric epithelial architecture underlying mucosal damage, inflammation and carcinogenesis.
Abstract: Helicobacter pylori cagA-positive strains are associated with gastritis, ulcerations and gastric adenocarcinoma. CagA is delivered into gastric epithelial cells and, on tyrosine phosphorylation, specifically binds and activates the SHP2 oncoprotein, thereby inducing the formation of an elongated cell shape known as the 'hummingbird' phenotype. In polarized epithelial cells, CagA also disrupts the tight junction and causes loss of apical-basolateral polarity. We show here that H. pylori CagA specifically interacts with PAR1/MARK kinase, which has an essential role in epithelial cell polarity. Association of CagA inhibits PAR1 kinase activity and prevents atypical protein kinase C (aPKC)-mediated PAR1 phosphorylation, which dissociates PAR1 from the membrane, collectively causing junctional and polarity defects. Because of the multimeric nature of PAR1 (ref. 14), PAR1 also promotes CagA multimerization, which stabilizes the CagA-SHP2 interaction. Furthermore, induction of the hummingbird phenotype by CagA-activated SHP2 requires simultaneous inhibition of PAR1 kinase activity by CagA. Thus, the CagA-PAR1 interaction not only elicits the junctional and polarity defects but also promotes the morphogenetic activity of CagA. Our findings revealed that PAR1 is a key target of H. pylori CagA in the disorganization of gastric epithelial architecture underlying mucosal damage, inflammation and carcinogenesis.

Journal ArticleDOI
TL;DR: Hydroxyl radical scavenging activity of fucoxanthin and fu Coxanthinol compared with halocynthiaxanthin is assumed to be due to presence of the allenic bond, and ESR analysis of the superoxide radical scavenge activity showed the superiority of fuoxanthin over the other two carotenoids tested.
Abstract: Antioxidant activity of carotenoids is suggested to be one of the factors for their disease preventing effects. Marine carotenoids fucoxanthin and its two metabolites, fucoxanthinol and halocynthiaxanthin, have been shown to exhibit several biological effects. The antioxidant activities of these three carotenoids were assessed in vitro with respect to radical scavenging and singlet oxygen quenching abilities. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of fucoxanthin and fucoxanthinol was higher than that of halocynthiaxanthin, with the effective concentration for 50% scavenging (EC 50) being 164.60, 153.78, and 826.39 microM, respectively. 2,2'-Azinobis-3-ethylbenzo thizoline-6-sulphonate radical scavenging activity of fucoxanthinol (EC 50, 2.49 microM) was stronger than that of fucoxanthin (EC 50, 8.94 microM). Hydroxyl radical scavenging activity as measured by the chemiluminescence technique showed that the scavenging activity of fucoxanthin was 7.9 times higher than that by fucoxanthinol, 16.3 times higher than that by halocynthiaxanthin, and 13.5 times higher than that by alpha-tocopherol. A similar trend was observed when the hydroxyl radical scavenging was assessed by the electron spin resonance (ESR) technique. ESR analysis of the superoxide radical scavenging activity also showed the superiority of fucoxanthin over the other two carotenoids tested. Singlet oxygen quenching ability of the three carotenoids was lower than that of beta-carotene, with quenching rate constants ( k Q, x10 (10) M (-1) s (-1)) being 1.19, 1.81, 0.80, and 12.78 for fucoxanthin, fucoxanthinol, halocynthiaxanthin, and beta-carotene, respectively. The higher radical scavenging activity of fucoxanthin and fucoxanthinol compared with halocynthiaxanthin is assumed to be due to presence of the allenic bond.

Journal ArticleDOI
TL;DR: Action potentials also induce the release of glutamate from axons in the corpus callosum, a white matter region responsible for interhemispheric communication, indicating that axons within white matter both conduct action potentials and engage in rapid neuron-glia communication.
Abstract: Directed fusion of transmitter-laden vesicles enables rapid intercellular signaling in the central nervous system and occurs at synapses within gray matter. Here we show that action potentials also induce the release of glutamate from axons in the corpus callosum, a white matter region responsible for interhemispheric communication. Callosal axons release glutamate by vesicular fusion, which induces quantal AMPA receptor–mediated currents in NG2+ glial progenitors at anatomically distinct axo–glial synaptic junctions. Glutamate release from axons was facilitated by repetitive stimulation and could be inhibited through activation of metabotropic autoreceptors. Although NG2+ cells form associations with nodes of Ranvier in white matter, measurements of conduction velocity indicated that unmyelinated fibers are responsible for glutamatergic signaling with NG2+ glia. This activity-dependent secretion of glutamate was prevalent in the developing and mature mouse corpus callosum, indicating that axons within white matter both conduct action potentials and engage in rapid neuron-glia communication.

Journal ArticleDOI
TL;DR: Following a correct application procedure, the etch-and-rinse, self-etch and self-adhesive luting agents are equally effective in bonding to enamel and dentin.

Journal ArticleDOI
TL;DR: The data collectively suggest that the identified SDR protein NYC1 plays essential roles in the regulation of LHCII and thylakoid membrane degradation during senescence.
Abstract: Chlorophyll degradation is an aspect of leaf senescence, which is an active process to salvage nutrients from old tissues. non-yellow coloring1 (nyc1) is a rice (Oryza sativa) stay-green mutant in which chlorophyll degradation during senescence is impaired. Pigment analysis revealed that degradation of not only chlorophylls but also light-harvesting complex II (LHCII)–bound carotenoids was repressed in nyc1, in which most LHCII isoforms were selectively retained during senescence. Ultrastructural analysis of nyc1 chloroplasts revealed that large and thick grana were present even in the late stage of senescence, suggesting that degradation of LHCII is required for the proper degeneration of thylakoid membranes. Map-based cloning of NYC1 revealed that it encodes a chloroplast-localized short-chain dehydrogenase/reductase (SDR) with three transmembrane domains. The predicted structure of the NYC1 protein and the phenotype of the nyc1 mutant suggest the possibility that NYC1 is a chlorophyll b reductase. Although we were unable to detect the chlorophyll b reductase activity of NYC1, NOL (for NYC1-like), a protein closely related to NYC1 in rice, showed chlorophyll b reductase activity in vitro. We suggest that NYC1 and NOL encode chlorophyll b reductases with divergent functions. Our data collectively suggest that the identified SDR protein NYC1 plays essential roles in the regulation of LHCII and thylakoid membrane degradation during senescence.

Journal ArticleDOI
TL;DR: A mathematical model of the adaptive dynamics of a transport network of the true slime mold Physarum polycephalum, an amoeboid organism that exhibits path-finding behavior in a maze, which contains a key parameter corresponding to the extent of the feedback regulation between the thickness of a tube and the flux through it.

Journal ArticleDOI
12 Jul 2007-Oncogene
TL;DR: Results indicate that perturbation of the E-cadherin/β-catenin complex by H. pylori CagA plays an important role in the development of intestinal metaplasia, a premalignant transdifferentiation of gastric epithelial cells from which intestinal-type gastric adenocarcinoma arises.
Abstract: Infection with Helicobacter pylori cagA-positive strains is associated with gastric adenocarcinoma. Intestinal metaplasia is a precancerous lesion of the stomach characterized by transdifferentiation of the gastric mucosa to an intestinal phenotype. The H. pylori cagA gene product, CagA, is delivered into gastric epithelial cells, where it undergoes tyrosine phosphorylation by Src family kinases. Tyrosine-phosphorylated CagA specifically binds to and activates SHP-2 phosphatase, thereby inducing cell-morphological transformation. We report here that CagA physically interacts with E-cadherin independently of CagA tyrosine phosphorylation. The CagA/E-cadherin interaction impairs the complex formation between E-cadherin and beta-catenin, causing cytoplasmic and nuclear accumulation of beta-catenin. CagA-deregulated beta-catenin then transactivates beta-catenin-dependent genes such as cdx1, which encodes intestinal specific CDX1 transcription factor. In addition to beta-catenin signal, CagA also transactivates p21(WAF1/Cip1), again, in a phosphorylation-independent manner. Consequently, CagA induces aberrant expression of an intestinal-differentiation marker, goblet-cell mucin MUC2, in gastric epithelial cells that have been arrested in G1 by p21(WAF1/Cip1). These results indicate that perturbation of the E-cadherin/beta-catenin complex by H. pylori CagA plays an important role in the development of intestinal metaplasia, a premalignant transdifferentiation of gastric epithelial cells from which intestinal-type gastric adenocarcinoma arises.

Journal ArticleDOI
TL;DR: In vivo studies revealed that the PPD was potent in stabilizing MEND in the systemic circulation and facilitating tumor accumulation, and MEND modified with PPD is a promising device, which has the potential to make in vivo cancer gene therapy achievable.
Abstract: For successful cancer gene therapy via intravenous (i.v.) administration, it is essential to optimize the stability of carriers in the systemic circulation and the cellular association after the accumulation of the carrier in tumor tissue. However, a dilemma exists regarding the use of poly(ethylene glycol) (PEG), which is useful for conferring stability in the systemic circulation, but is undesirable for the cellular uptake and the following processes. We report the development of a PEG-peptide-lipid ternary conjugate (PEG-Peptide-DOPE conjugate (PPD)). In this strategy, the PEG is removed from the carriers via cleavage by a matrix metalloproteinase (MMP), which is specifically expressed in tumor tissues. An in vitro study revealed that the PPD-modified gene carrier (Multifunctional Envelope-type Nano Device: MEND) exhibited pDNA expression activity that was dependent on the MMP expression level in the host cells. In vivo studies further revealed that the PPD was potent in stabilizing MEND in the systemic circulation and facilitating tumor accumulation. Moreover, the i.v. administration of PPD or PEG/PPD dually-modified MEND resulted in the stimulation of pDNA expression in tumor tissue, as compared with a conventional PEG-modified MEND. Thus, MEND modified with PPD is a promising device, which has the potential to make in vivo cancer gene therapy achievable.

Journal ArticleDOI
TL;DR: In this article, the anammox reaction was observed within 50 days and a total nitrogen removal rate of 26.0 kg-Nm(-3)day(-1) was obtained after 247 days.

Journal ArticleDOI
TL;DR: Although this nationwide survey establishes the heterogeneous characteristics of HLH, the results should be useful in planning prospective studies to identify the most effective therapy for each HLH subtype.
Abstract: Hemophagocytic lymphohistiocytosis (HLH), a disorder of the mononuclear phagocyte system, can be classified into two distinct forms: primary HLH (FHL) and secondary HLH. To clarify the epidemiology and clinical outcome for each HLH subtype, we conducted a nationwide survey of HLH in Japan. Since 799 patients were diagnosed in 292 institutions of Japan between 2001 and 2005, the annual incidence of HLH was estimated as 1 in 800,000 per year. Among them, 567 cases were actually analyzed in this study. The most frequent subtype was Epstein-Barr virus (EBV)-associated HLH, followed by other infection- or lymphoma-associated HLH. Age distribution showed a peak of autoimmune disease- and infection-associated HLH in children, while FHL and lymphoma-associated HLH occurred almost exclusively in infants and the elderly, respectively. The 5-year overall survival rate exceeded 80% for patients with EBV- or other infection-associated HLH, was intermediate for those with FHL or B-cell lymphoma-associated HLH, and poor for those with T/NK cell lymphoma-associated HLH (<15%). Although this nationwide survey establishes the heterogeneous characteristics of HLH, the results should be useful in planning prospective studies to identify the most effective therapy for each HLH subtype.

Journal ArticleDOI
TL;DR: 2-AG is identified as the major endocannabinoid mediating retrograde suppression at excitatory and inhibitory synapses of MS neurons, and CB1 cannabinoid receptor, the main target of 2-AG, was present at high levels on GABAergic axon terminals of MS neuron and parvalbumin-positive interneurons and at low levels on excitatories corticostriatal afferents.
Abstract: Endogenous cannabinoids (endocannabinoids) mediate retrograde signals for short- and long-term suppression of transmitter release at synapses of striatal medium spiny (MS) neurons. An endocannabinoid, 2-arachidonoyl-glycerol (2-AG), is synthesized from diacylglycerol (DAG) after membrane depolarization and Gq-coupled receptor activation. To understand 2-AG-mediated retrograde signaling in the striatum, we determined precise subcellular distributions of the synthetic enzyme of 2-AG, DAG lipase-α (DAGLα), and its upstream metabotropic glutamate receptor 5 (mGluR5) and muscarinic acetylcholine receptor 1 (M1). DAGLα, mGluR5, and M1 were all richly distributed on the somatodendritic surface of MS neurons, but their subcellular distributions were different. Although mGluR5 and DAGLα levels were highest in spines and accumulated in the perisynaptic region, M1 level was lowest in spines and was rather excluded from the mGluR5-rich perisynaptic region. These subcellular arrangements suggest that mGluR5 and M1 might differentially affect endocannabinoid-mediated, depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE) in MS neurons. Indeed, mGluR5 activation enhanced both DSI and DSE, whereas M1 activation enhanced DSI only. Importantly, DSI, DSE, and receptor-driven endocannabinoid-mediated suppression were all abolished by the DAG lipase inhibitor tetrahydrolipstatin, indicating 2-AG as the major endocannabinoid mediating retrograde suppression at excitatory and inhibitory synapses of MS neurons. Accordingly, CB1 cannabinoid receptor, the main target of 2-AG, was present at high levels on GABAergic axon terminals of MS neurons and parvalbumin-positive interneurons and at low levels on excitatory corticostriatal afferents. Thus, endocannabinoid signaling molecules are arranged to modulate the excitability of the MS neuron effectively depending on cortical activity and cholinergic tone as measured by mGluR5 and M1 receptors, respectively.

Journal ArticleDOI
TL;DR: The long-term effects of different management practices on soil microbial biomass (SMB) (substrate-induced respiration (SIR) and chloroform fumigation incubation (CFI)) and micro-flora physiological and catabolic diversity (BIOLOG TM ecoplate well system) were evaluated by the International Maize and Wheat Improvement Center (CIMMYT) at its semi-arid highland experiment station in Mexico.

Journal ArticleDOI
Tsuyoshi Tanaka1, Baltazar A. Antonio1, Shoshi Kikuchi1, Takashi Matsumoto1, Yoshiaki Nagamura1, Hisataka Numa1, Hiroaki Sakai1, Jianzhong Wu1, Takeshi Itoh1, Takeshi Itoh2, Takuji Sasaki1, Ryo Aono, Yasuyuki Fujii3, Takuya Habara, Erimi Harada, Masako Kanno, Yoshihiro Kawahara4, Hiroaki Kawashima, Hiromi Kubooka, Akihiro Matsuya, Hajime Nakaoka, Naomi Saichi, Ryoko Sanbonmatsu, Yoshiharu Sato, Yuji Shinso, Mami Suzuki, Jun-ichi Takeda, Motohiko Tanino, Fusano Todokoro, Kaori Yamaguchi, Naoyuki Yamamoto, Chisato Yamasaki, Tadashi Imanishi2, Toshihisa Okido, Masahito Tada, Kazuho Ikeo, Yoshio Tateno, Takashi Gojobori, Yao-Cheng Lin5, Fu Jin Wei5, Yue-Ie C. Hsing5, Qiang Zhao, Bin Han, Melissa Kramer6, Richard W. McCombie6, David Lonsdale7, Claire O'Donovan7, Eleanor J. Whitfield7, Rolf Apweiler7, Kanako O. Koyanagi8, Jitendra P. Khurana9, Saurabh Raghuvanshi9, Nagendra K. Singh10, Akhilesh K. Tyagi9, Georg Haberer, Masaki Fujisawa, Satomi Hosokawa, Yukiyo Ito, Hiroshi Ikawa, Michie Shibata, Mayu Yamamoto, Richard Bruskiewich11, Douglas R. Hoen12, Thomas E. Bureau12, Nobukazu Namiki13, Hajime Ohyanagi13, Yasumichi Sakai13, Satoshi Nobushima13, Katsumi Sakata13, Roberto A. Barrero14, Yutaka Sato15, Alexandre Souvorov16, Brian Smith-White16, Tatiana Tatusova16, Suyoung An17, Gynheung An17, Satoshi Oota, Galina Fuks18, Joachim Messing, Karen R. Christie19, Damien Lieberherr20, Hyeran Kim21, Andrea Zuccolo21, Rod A. Wing, Kan Nobuta22, Pamela J. Green22, Cheng Lu22, Blake C. Meyers22, Cristian Chaparro23, Benoît Piégu23, Olivier Panaud23, Manuel Echeverria23 
TL;DR: The latest version of the RAP-DB contains a variety of annotation data as follows: clone positions, structures and functions of 31 439 genes validated by cDNAs, RNA genes detected by massively parallel signature sequencing (MPSS) technology and sequence similarity, flanking sequences of mutant lines, transposable elements, etc.
Abstract: The Rice Annotation Project Database (RAP-DB) was created to provide the genome sequence assembly of the International Rice Genome Sequencing Project (IRGSP), manually curated annotation of the sequence, and other genomics information that could be useful for comprehensive understanding of the rice biology. Since the last publication of the RAP-DB, the IRGSP genome has been revised and reassembled. In addition, a large number of rice-expressed sequence tags have been released, and functional genomics resources have been produced worldwide. Thus, we have thoroughly updated our genome annotation by manual curation of all the functional descriptions of rice genes. The latest version of the RAP-DB contains a variety of annotation data as follows: clone positions, structures and functions of 31 439 genes validated by cDNAs, RNA genes detected by massively parallel signature sequencing (MPSS) technology and sequence similarity, flanking sequences of mutant lines, transposable elements, etc. Other annotation data such as Gnomon can be displayed along with those of RAP for comparison. We have also developed a new keyword search system to allow the user to access useful information. The RAP-DB is available at: http://rapdb.dna.affrc.go.jp/ and http://rapdb.lab.nig.ac.jp/.

Journal ArticleDOI
TL;DR: In this paper, a spatially explicit individual-based Dynamic Global Vegetation Model (SEIB-DGVM) is proposed to simulate the local interactions among individual trees within a spatial explicit virtual forest, where a sample plot is placed at each grid box, and the growth, competition, and decay of each individual tree within each plot is calculated by considering the environmental conditions for that tree as it relates to the trees that surround it.

Journal ArticleDOI
TL;DR: These guidelines, resulting from a workshop sponsored by the Ministry of Health, Labour, and Welfare, Idiopathic Cardiomyopathy Research Committee, outline the steps necessary for diagnosis of takotsubo cardiomyopathic.
Abstract: Background It is important to differentiate takotsubo cardiomyopathy from other types of transient ventricular dysfunction. These guidelines, resulting from a workshop sponsored by the Ministry of Health, Labour, and Welfare, Idiopathic Cardiomyopathy Research Committee, outline the steps necessary for diagnosis of takotsubo cardiomyopathy. Methods and Results The survey was conducted by mailing a questionnaire to the researchers of the 203 institutions that had made presentations on this disease at scientific meetings of the Japanese Circulation Society from November 1989 to October 2002. The questionnaires were sent and collected on January 10, 2003. Based on the results of the questionnaire, the first edition of the guidelines for diagnosis of takotsubo cardiomyopathy was prepared and evaluated at the 2003 group meeting of the Research Committee. Out of 33 researchers in Japan who had published research papers on this disease, 21 responded to the request and provided their opinions. The guidelines were revised and were approved at the 2004 group meeting. Conclusions This summary provides standard guidelines for patients with takotsubo cardiomyopathy. (Circ J 2007; 71: 990 - 992)

Journal ArticleDOI
TL;DR: A sensitive assay based on self-assembling radiolabeled tetramers that allows discrimination of antibodies against folded or denatured myelin oligodendrocyte glycoprotein (MOG) by selective unfolding of the antigen domain is developed.
Abstract: The role of autoantibodies in the pathogenesis of multiple sclerosis (MS) and other demyelinating diseases is controversial, in part because widely used western blotting and ELISA methods either do not permit the detection of conformation-sensitive antibodies or do not distinguish them from conformation-independent antibodies. We developed a sensitive assay based on self-assembling radiolabeled tetramers that allows discrimination of antibodies against folded or denatured myelin oligodendrocyte glycoprotein (MOG) by selective unfolding of the antigen domain. The tetramer radioimmunoassay (RIA) was more sensitive for MOG autoantibody detection than other methodologies, including monomer-based RIA, ELISA or fluorescent-activated cell sorting (FACS). Autoantibodies from individuals with acute disseminated encephalomyelitis (ADEM) selectively bound the folded MOG tetramer, whereas sera from mice with experimental autoimmune encephalomyelitis induced with MOG peptide immunoprecipitated only the unfolded tetramer. MOG-specific autoantibodies were identified in a subset of ADEM but only rarely in adult-onset MS cases, indicating that MOG is a more prominent target antigen in ADEM than MS.

Journal ArticleDOI
TL;DR: The structure is not only chemically feasible, but also provides a seamless structural understanding of the i-YbCd(5.7) phase and its series of related i-QCs and approximant crystals, revealing hierarchic features that are of considerable physical interest.
Abstract: Icosahedral quasicrystals (i-QCs) are long-range ordered solids that show non-crystallographic symmetries such as five-fold rotations. Their detailed atomic structures are still far from completely understood, because most stable i-QCs form as ternary alloys suffering from chemical disorder. Here, we present the first detailed structure solution of i-YbCd(5.7), one of the very few stable binary i-QCs, by means of X-ray structure determination. Three building units with unique atomic decorations arrange quasiperiodically and fill the space. These also serve as building units in the periodic approximant crystals. The structure is not only chemically feasible, but also provides a seamless structural understanding of the i-YbCd(5.7) phase and its series of related i-QCs and approximant crystals, revealing hierarchic features that are of considerable physical interest.