scispace - formally typeset
Search or ask a question

Showing papers by "Hokkaido University published in 2020"


Journal ArticleDOI
Theo Vos1, Theo Vos2, Theo Vos3, Stephen S Lim  +2416 moreInstitutions (246)
TL;DR: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates, and there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries.

5,802 citations


Journal ArticleDOI
TL;DR: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure.

3,059 citations


Journal ArticleDOI
28 Jan 2020-ACS Nano
TL;DR: Prominent authors from all over the world joined efforts to summarize the current state-of-the-art in understanding and using SERS, as well as to propose what can be expected in the near future, in terms of research, applications, and technological development.
Abstract: The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

1,768 citations


Journal ArticleDOI
TL;DR: A systematic literature review with meta-analysis was performed using three databases to assess clinical, laboratory, imaging features, and outcomes of COVID-19 confirmed cases, finding that this virus brings a huge burden to healthcare facilities, especially in patients with comorbidities.

1,762 citations


Journal ArticleDOI
Peter J. Campbell1, Gad Getz2, Jan O. Korbel3, Joshua M. Stuart4  +1329 moreInstitutions (238)
06 Feb 2020-Nature
TL;DR: The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.
Abstract: Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1,2,3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10,11,12,13,14,15,16,17,18.

1,600 citations


Journal ArticleDOI
TL;DR: The quantification of SARS-CoV-2 in wastewater affords the ability to monitor the prevalence of infections among the population via wastewater-based epidemiology (WBE) and highlights the viability of WBE for monitoring infectious diseases, such as COVID-19, in communities.

1,325 citations


Journal ArticleDOI
TL;DR: The incubation period falls within the range of 2–14 days with 95% confidence and has a mean of around 5 days when approximated using the best-fit lognormal distribution and it is recommended that the length of quarantine should be at least 14 days.
Abstract: The geographic spread of 2019 novel coronavirus (COVID-19) infections from the epicenter of Wuhan, China, has provided an opportunity to study the natural history of the recently emerged virus. Using publicly available event-date data from the ongoing epidemic, the present study investigated the incubation period and other time intervals that govern the epidemiological dynamics of COVID-19 infections. Our results show that the incubation period falls within the range of 2–14 days with 95% confidence and has a mean of around 5 days when approximated using the best-fit lognormal distribution. The mean time from illness onset to hospital admission (for treatment and/or isolation) was estimated at 3–4 days without truncation and at 5–9 days when right truncated. Based on the 95th percentile estimate of the incubation period, we recommend that the length of quarantine should be at least 14 days. The median time delay of 13 days from illness onset to death (17 days with right truncation) should be considered when estimating the COVID-19 case fatality risk.

1,222 citations



Journal ArticleDOI
TL;DR: The serial interval of COVID-19 is close to or shorter than its median incubation period, indicating that a substantial proportion of secondary transmission may occur prior to illness onset and that calculations made using the SARS serial interval may introduce bias.

963 citations


Journal ArticleDOI
Jens Kattge1, Gerhard Bönisch2, Sandra Díaz3, Sandra Lavorel  +751 moreInstitutions (314)
TL;DR: The extent of the trait data compiled in TRY is evaluated and emerging patterns of data coverage and representativeness are analyzed to conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements.
Abstract: Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.

882 citations


Journal ArticleDOI
Joan B. Soriano1, Parkes J Kendrick2, Katherine R. Paulson2, Vinay Gupta2  +311 moreInstitutions (178)
TL;DR: It is shown that chronic respiratory diseases remain a leading cause of death and disability worldwide, with growth in absolute numbers but sharp declines in several age-standardised estimators since 1990.

Journal ArticleDOI
Gilberto Pastorello1, Carlo Trotta2, E. Canfora2, Housen Chu1  +300 moreInstitutions (119)
TL;DR: The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe, and is detailed in this paper.
Abstract: The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

Journal ArticleDOI
TL;DR: There is an urgent need for further research to establish methodologies for wastewater surveillance and understand the implications of the presence of SARS-CoV-2 in wastewater.

Journal ArticleDOI
19 May 2020-Immunity
TL;DR: ACE2 is identified as a SARS-CoV-2 receptor, and the latter show its entry mechanism depends on cellular serine protease TMPRSS2, which may explain proinflammatory cytokine release via the associated angiotestin II pathway and a possible therapeutic target via the IL-6-STAT3 axis.

Journal ArticleDOI
TL;DR: It is hypothesize that IL-6-STAT3 signaling is a promising therapeutic target for the cytokine storm in COVID-19, because IL- 6 is a major STAT3 stimulator, particularly during inflammation.
Abstract: The newly emerging coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, but has rapidly spread all over the world. Some COVID-19 patients encounter a severe symptom of acute respiratory distress syndrome (ARDS) with high mortality. This high severity is dependent on a cytokine storm, most likely induced by the interleukin-6 (IL-6) amplifier, which is hyper-activation machinery that regulates the nuclear factor kappa B (NF-κB) pathway and stimulated by the simultaneous activation of IL-6-signal transducer and activator of transcription 3 (STAT3) and NF-κB signaling in non-immune cells including alveolar epithelial cells and endothelial cells. We hypothesize that IL-6-STAT3 signaling is a promising therapeutic target for the cytokine storm in COVID-19, because IL-6 is a major STAT3 stimulator, particularly during inflammation. We herein review the pathogenic mechanism and potential therapeutic targets of ARDS in COVID-19 patients.

Journal ArticleDOI
TL;DR: In this article, a collection of initial-condition large ensembles (LEs) generated with seven Earth system models under historical and future radiative forcing scenarios provides new insights into uncertainties due to internal variability versus model differences.
Abstract: Internal variability in the climate system confounds assessment of human-induced climate change and imposes irreducible limits on the accuracy of climate change projections, especially at regional and decadal scales. A new collection of initial-condition large ensembles (LEs) generated with seven Earth system models under historical and future radiative forcing scenarios provides new insights into uncertainties due to internal variability versus model differences. These data enhance the assessment of climate change risks, including extreme events, and offer a powerful testbed for new methodologies aimed at separating forced signals from internal variability in the observational record. Opportunities and challenges confronting the design and dissemination of future LEs, including increased spatial resolution and model complexity alongside emerging Earth system applications, are discussed. Climate change detection is confounded by internal variability, but recent initial-condition large ensembles (LEs) have begun addressing this issue. This Perspective discusses the value of multi-model LEs, the challenges of providing them and their role in future climate change research.

Journal ArticleDOI
TL;DR: Comparison with the reported COVID-19 cases in Yamanashi Prefecture showed that SARS-CoV-2 RNA was detected in the secondary-treated wastewater sample when the cases peaked in the community.

Journal ArticleDOI
TL;DR: To the knowledge, this is the first study reporting the detection of SARS-CoV-2 RNA in wastewater in North America, including the USA, however, concentration methods and RT-qPCR assays need to be refined and validated to increase the sensitivity of Sars- CoV- 2 RNA detection in wastewater.

Journal ArticleDOI
TL;DR: Ruxolitinib therapy led to significant improvements in efficacy outcomes, with a higher incidence of thrombocytopenia, the most frequent toxic effect, than that observed with control therapy.
Abstract: Background Acute graft-versus-host disease (GVHD) remains a major limitation of allogeneic stem-cell transplantation; not all patients have a response to standard glucocorticoid treatment....


Journal ArticleDOI
TL;DR: In this article, the authors assess the potential for future progress, as well as assess the benefits offered by competitor technologies, in order to make responsible recommendations for future directions, and discuss the factors impacting that future.
Abstract: Internal combustion (IC) engines operating on fossil fuel oil provide about 25% of the world’s power (about 3000 out of 13,000 million tons oil equivalent per year—see Figure 1), and in doing so, they produce about 10% of the world’s greenhouse gas (GHG) emissions (Figure 2). Reducing fuel consumption and emissions has been the goal of engine researchers and manufacturers for years, as can be seen in the two decades of ground-breaking peer-reviewed articles published in this International Journal of Engine Research (IJER). Indeed, major advances have been made, making today’s IC engine a technological marvel. However, recently, the reputation of IC engines has been dealt a severe blow by emission scandals that threaten the ability of this technology to make significant and further contributions to the reduction of transportation sector emissions. In response, there have been proposals to replace vehicle IC engines with electric-drives with the intended goals of further reducing fuel consumption and emissions, and to decrease vehicle GHG emissions. Indeed, some potential students and researchers are being dissuaded from seeking careers in IC engine research due to disparaging statements made in the popular press and elsewhere that disproportionately blame IC engines for increasing atmospheric GHGs. Without a continuous influx of enthusiastic, welltrained engineers into the profession, the potential further benefits that improved IC engines can still provide will not be realized. As responsible automotive engineers and as stewards of the environment for future generations, it is up to our community to make an honest assessment of the progress made in the development of IC engines over the past century, with their almost universal adoption to meet the world’s mobility and power generation needs. Considering that the maturity of IC engine technology is something that many other technologies/possibilities do not have, we also need to assess the potential for future progress, as well as to assess the benefits offered by competitor technologies, in order to make responsible recommendations for future directions. Factors impacting that future are discussed in this editorial and include the following:

Journal ArticleDOI
TL;DR: An extensive analysis and comparison between different ML techniques using a case study from Algeria is undertaken, noting that tree-based ensemble algorithms achieve excellent results compared to other machine learning algorithms and that the Random Forest algorithm offers robust performance for accurate landslide susceptibility mapping with only a small number of adjustments required before training the model.

Journal ArticleDOI
TL;DR: Clinical recommendations for the management of severe asthma are provided and the use of novel therapies for severe asthma, specifically biologicals for type 2 high asthma, and antimuscarinic agents and macrolides, as well as on biomarkers for predicting treatment response are made.
Abstract: This document provides clinical recommendations for the management of severe asthma. Comprehensive evidence syntheses, including meta-analyses, were performed to summarise all available evidence relevant to the European Respiratory Society/American Thoracic Society Task Force9s questions. The evidence was appraised using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach and the results were summarised in evidence profiles. The evidence syntheses were discussed and recommendations formulated by a multidisciplinary Task Force of asthma experts, who made specific recommendations on six specific questions. After considering the balance of desirable and undesirable consequences, quality of evidence, feasibility, and acceptability of various interventions, the Task Force made the following recommendations: 1) suggest using anti-interleukin (IL)-5 and anti-IL-5 receptor α for severe uncontrolled adult eosinophilic asthma phenotypes; 2) suggest using a blood eosinophil cut-point ≥150 μL−1 to guide anti-IL-5 initiation in adult patients with severe asthma; 3) suggest considering specific eosinophil (≥260 μL−1) and exhaled nitric oxide fraction (≥19.5 ppb) cut-offs to identify adolescents or adults with the greatest likelihood of response to anti-IgE therapy; 4) suggest using inhaled tiotropium for adolescents and adults with severe uncontrolled asthma despite Global Initiative for Asthma (GINA) step 4–5 or National Asthma Education and Prevention Program (NAEPP) step 5 therapies; 5) suggest a trial of chronic macrolide therapy to reduce asthma exacerbations in persistently symptomatic or uncontrolled patients on GINA step 5 or NAEPP step 5 therapies, irrespective of asthma phenotype; and 6) suggest using anti-IL-4/13 for adult patients with severe eosinophilic asthma and for those with severe corticosteroid-dependent asthma regardless of blood eosinophil levels. These recommendations should be reconsidered as new evidence becomes available.

Journal ArticleDOI
TL;DR: In this article, the relationship between microbiota composition and clinical outcomes after allogeneic hematopoietic-cell transplantation has been described in single-center studies in the US.
Abstract: Background Relationships between microbiota composition and clinical outcomes after allogeneic hematopoietic-cell transplantation have been described in single-center studies. Geographic v...

Journal ArticleDOI
TL;DR: The most plausible number of infections is in the order of thousands, rather than hundreds, and there is a strong indication that untraced exposures other than the one in the epidemiologically linked seafood market in Wuhan have occurred.
Abstract: A cluster of pneumonia cases linked to a novel coronavirus (2019-nCoV) was reported by China in late December 2019. Reported case incidence has now reached the hundreds, but this is likely an underestimate. As of 24 January 2020, with reports of thirteen exportation events, we estimate the cumulative incidence in China at 5502 cases (95% confidence interval: 3027, 9057). The most plausible number of infections is in the order of thousands, rather than hundreds, and there is a strong indication that untraced exposures other than the one in the epidemiologically linked seafood market in Wuhan have occurred.

Journal ArticleDOI
TL;DR: It is argued that the current COVID-19 epidemic has a substantial potential for causing a pandemic and the proposed approach provides insights in early risk assessment using publicly available data.
Abstract: The exported cases of 2019 novel coronavirus (COVID-19) infection that were confirmed outside China provide an opportunity to estimate the cumulative incidence and confirmed case fatality risk (cCFR) in mainland China. Knowledge of the cCFR is critical to characterize the severity and understand the pandemic potential of COVID-19 in the early stage of the epidemic. Using the exponential growth rate of the incidence, the present study statistically estimated the cCFR and the basic reproduction number-the average number of secondary cases generated by a single primary case in a naive population. We modeled epidemic growth either from a single index case with illness onset on 8 December, 2019 (Scenario 1), or using the growth rate fitted along with the other parameters (Scenario 2) based on data from 20 exported cases reported by 24 January 2020. The cumulative incidence in China by 24 January was estimated at 6924 cases (95% confidence interval [CI]: 4885, 9211) and 19,289 cases (95% CI: 10,901, 30,158), respectively. The latest estimated values of the cCFR were 5.3% (95% CI: 3.5%, 7.5%) for Scenario 1 and 8.4% (95% CI: 5.3%, 12.3%) for Scenario 2. The basic reproduction number was estimated to be 2.1 (95% CI: 2.0, 2.2) and 3.2 (95% CI: 2.7, 3.7) for Scenarios 1 and 2, respectively. Based on these results, we argued that the current COVID-19 epidemic has a substantial potential for causing a pandemic. The proposed approach provides insights in early risk assessment using publicly available data.

Journal ArticleDOI
TL;DR: A new range of aerosol radiative forcing over the industrial era is provided based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations, to constrain the forcing from aerosol‐radiation interactions.
Abstract: Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth’s radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable and arguable lines of evidence, including modelling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of −1.60 to −0.65 W m−2, or −2.0 to −0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted towards more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds.

Journal ArticleDOI
TL;DR: Author(s): Bivins, Aaron; North, Devin; Ahmad, Arslan; Ahmed, Warish; Alm, Eric; Been, Frederic; Bhattacharya, Prosun; Bijlsma, Lubertus; Boehm, Alexandria B; Brown, Joe; Buttiglieri, Gianluigi; Calabro, Vincenza; Carducci, Annalaura; Castiglioni, Sara; Cetecioglu Guro
Abstract: Author(s): Bivins, Aaron; North, Devin; Ahmad, Arslan; Ahmed, Warish; Alm, Eric; Been, Frederic; Bhattacharya, Prosun; Bijlsma, Lubertus; Boehm, Alexandria B; Brown, Joe; Buttiglieri, Gianluigi; Calabro, Vincenza; Carducci, Annalaura; Castiglioni, Sara; Cetecioglu Gurol, Zeynep; Chakraborty, Sudip; Costa, Federico; Curcio, Stefano; de Los Reyes, Francis L; Delgado Vela, Jeseth; Farkas, Kata; Fernandez-Casi, Xavier; Gerba, Charles; Gerrity, Daniel; Girones, Rosina; Gonzalez, Raul; Haramoto, Eiji; Harris, Angela; Holden, Patricia A; Islam, Md Tahmidul; Jones, Davey L; Kasprzyk-Hordern, Barbara; Kitajima, Masaaki; Kotlarz, Nadine; Kumar, Manish; Kuroda, Keisuke; La Rosa, Giuseppina; Malpei, Francesca; Mautus, Mariana; McLellan, Sandra L; Medema, Gertjan; Meschke, John Scott; Mueller, Jochen; Newton, Ryan J; Nilsson, David; Noble, Rachel T; van Nuijs, Alexander; Peccia, Jordan; Perkins, T Alex; Pickering, Amy J; Rose, Joan; Sanchez, Gloria; Smith, Adam; Stadler, Lauren; Stauber, Christine; Thomas, Kevin; van der Voorn, Tom; Wigginton, Krista; Zhu, Kevin; Bibby, Kyle

Journal ArticleDOI
TL;DR: This review examines the phytochemical composition, pharmacokinetics, and pharmacological activities of A. sativum extracts as well as its main active constituent, allicin.
Abstract: Medicinal plants have been used from ancient times for human healthcare as in the form of traditional medicines, spices, and other food components. Garlic (Allium sativum L.) is an aromatic herbaceous plant that is consumed worldwide as food and traditional remedy for various diseases. It has been reported to possess several biological properties including anticarcinogenic, antioxidant, antidiabetic, renoprotective, anti-atherosclerotic, antibacterial, antifungal, and antihypertensive activities in traditional medicines. A. sativum is rich in several sulfur-containing phytoconstituents such as alliin, allicin, ajoenes, vinyldithiins, and flavonoids such as quercetin. Extracts and isolated compounds of A. sativum have been evaluated for various biological activities including antibacterial, antiviral, antifungal, antiprotozoal, antioxidant, anti-inflammatory, and anticancer activities among others. This review examines the phytochemical composition, pharmacokinetics, and pharmacological activities of A. sativum extracts as well as its main active constituent, allicin.

Posted ContentDOI
18 Feb 2020-medRxiv
TL;DR: The incubation period falls within the range of 2-14 days with 95% confidence and has a mean of around 5 days when approximated using the best-fit lognormal distribution and it is recommended that the length of quarantine should be at least 14 days.
Abstract: The geographic spread of 2019 novel coronavirus (COVID-19) infections from the epicenter of Wuhan, China, has provided an opportunity to study the natural history of the recently emerged virus. Using publicly available event-date data from the ongoing epidemic, the present study investigated the incubation period and other time intervals that govern the epidemiological dynamics of COVID-19 infections. Our results show that the incubation period falls within the range of 2–14 days with 95% confidence and has a mean of around 5 days when approximated using the best-fit lognormal distribution. The mean time from illness onset to hospital admission (for treatment and/or isolation) was estimated at 3–4 days without truncation and at 5–9 days when right truncated. Based on the 95th percentile estimate of the incubation period, we recommend that the length of quarantine should be at least 14 days. The median time delay of 13 days from illness onset to death (17 days with right truncation) should be considered when estimating the COVID-19 case fatality risk.