scispace - formally typeset
Search or ask a question
Institution

Hokkaido University

EducationSapporo, Hokkaidô, Japan
About: Hokkaido University is a education organization based out in Sapporo, Hokkaidô, Japan. It is known for research contribution in the topics: Population & Catalysis. The organization has 53925 authors who have published 115403 publications receiving 2651647 citations. The organization is also known as: Hokudai & Hokkaidō daigaku.
Topics: Population, Catalysis, Gene, Transplantation, Virus


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a morphodynamic model for river meander migration is presented, in which separate relations are developed for the migration of the eroding bank and the depositing bank.
Abstract: Many models of river meander migration rely upon a simple formalism, whereby the eroding bank is cut back at a rate that is dictated by the flow, and the depositing bank then migrates passively in response, so as to maintain a constant bankfull channel width. Here a new model is presented, in which separate relations are developed for the migration of the eroding bank and the depositing bank. It is assumed that the eroding bank consists of a layer of fine-grained sediment that is cohesive and/or densely riddled with roots, underlain by a purely noncohesive layer of sand and/or gravel. Following erosion of the noncohesive layer, the cohesive layer fails in the form of slump blocks, which armor the noncohesive layer and thereby moderate the erosion rate. If the slump block material breaks down or is fluvially entrained, the protection it provides for the noncohesive layer diminishes and bank erosion is renewed. Renewed bank erosion, however, rejuvenates slump block armoring. At the depositing bank, it is assumed that all the sediment delivered to the edge of vegetation due to the transverse component of sediment transport is captured by encroaching vegetation, which is not removed by successive floods. Separate equations describing the migration of the eroding and depositing banks are tied to a standard morphodynamic formulation for the evolution of the flow and bed in the central region of the channel. In this model, the river evolves toward maintenance of roughly constant bankfull width as it migrates only to the extent that the eroding bank and depositing bank ‘talk’ to each other via the medium of the morphodynamics of the channel center region. The model allows for both (a) migration for which erosion widens the channel, forcing deposition at the opposite bank, and (b) migration for which deposition narrows the channel forcing erosion at the opposite bank. Copyright © 2010 John Wiley & Sons, Ltd.

282 citations

Journal ArticleDOI
21 Mar 2008-Cell
TL;DR: It is found that paired immunoglobulin-like type 2 receptor (PILR) alpha associates with gB, and cells transduced with PILRalpha become susceptible to HSV-1 infection.

282 citations

Journal ArticleDOI
TL;DR: This study elucidated the intracellular fate of transferrin-modified liposomes and succeeded in altering it by introducing the pH-sensitive fusogenic peptide, GALA (WEAALAEAlAEALAEHLAEalAEALEALAA).
Abstract: Liposomes are one of the most promising systems for selective cellular targeting via introduction of specific ligands for cell-surface receptors. After being taken up by the cells, these liposomes usually follow intracellular pathways of receptor-mediated endocytosis. Control of intracelluar trafficking is required for optimized drug delivery. In this study, we elucidated the intracellular fate of transferrin-modified liposomes and succeeded in altering it by introducing the pH-sensitive fusogenic peptide, GALA (WEAALAEALAEALAEHLAEALAEALEALAA). Transferrins that are chemically attached to a liposomal surface (Tf-L) were internalized via receptor-mediated endocytosis more slowly than unmodified transferrins. In contrast to the recyclable nature of transferrin, liposome-attached transferrins together with encapsulated rhodamines were retained in vesicular compartments. When GALA was introduced into liposomal membranes using a cholesteryl moiety for anchoring (Chol-GALA), rhodamines were efficiently released...

282 citations

Journal ArticleDOI
TL;DR: A new catalyst system that suppresses the Pd black formation even under air and with a high substrate to catalyst molar ratio (S/C: more than 1000) in oxidation of alcohols is reported.
Abstract: In homogeneous catalyst systems, there is the persistent problem that metal aggregation and precipitation cause catalyst decomposition and considerable loss of catalytic activity. Pd black formation is a typical example. Pd catalysts are known to easily aggregate and form Pd black, although they realize a wide variety of useful reactions in organic synthesis. In order to overcome this intrinsic problem of homogeneous Pd catalysis, we explored a new class of Pd catalyst by adopting aerobic oxidation of alcohols as a probe reaction. Herein we report a new catalyst system that suppresses the Pd black formation even under air and with a high substrate to catalyst molar ratio (S/C: more than 1000) in oxidation of alcohols. The novel pyridine derivatives having a 2,3,4,5-tetraphenylphenyl substituent and its higher dendritic unit at the 3-position of the pyridine ring were found to be excellent ligands with Pd(OAc)2 in the palladium-catalyzed air (balloon) oxidation of alcohols in toluene at 80 °C. Comparison ...

282 citations

Journal ArticleDOI
TL;DR: Analysis of the nyc1 mutant, which shows the stay-green phenotype, and the nol mutant in rice, suggest that NOL and NYC1 are co-localized in the thylakoid membrane and act in the form of a complex as a chlorophyll b reductase in rice.
Abstract: Yellowing, which is related to the degradation of chlorophyll and chlorophyll-protein complexes, is a notable phenomenon during leaf senescence. NON-YELLOW COLORING 1 (NYC1) in rice encodes a membrane-localized short-chain dehydrogenase/reductase (SDR) that is thought to represent a chlorophyll b reductase necessary for catalyzing the first step of chlorophyll b degradation. Analysis of the nyc1 mutant, which shows the stay-green phenotype, revealed that chlorophyll b degradation is required for the degradation of light-harvesting complex II and thylakoid grana in leaf senescence. Phylogenetic analysis further revealed the existence of NYC1-LIKE (NOL) as the most closely related protein to NYC1. In the present paper, the nol mutant in rice was also found to show a stay-green phenotype very similar to that of the nyc1 mutant, i.e. the degradation of chlorophyll b was severely inhibited and light-harvesting complex II was selectively retained during senescence, resulting in the retention of thylakoid grana even at a late stage of senescence. The nyc1 nol double mutant did not show prominent enhancement of inhibition of chlorophyll degradation. NOL was localized on the stromal side of the thylakoid membrane despite the lack of a transmembrane domain. Immunoprecipitation analysis revealed that NOL and NYC1 interact physically in vitro. These observations suggest that NOL and NYC1 are co-localized in the thylakoid membrane and act in the form of a complex as a chlorophyll b reductase in rice.

282 citations


Authors

Showing all 54156 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Yi Cui2201015199725
John F. Hartwig14571466472
Yoshihiro Kawaoka13988375087
David Y. Graham138104780886
Takashi Kadowaki13787389729
Kazunari Domen13090877964
Susumu Kitagawa12580969594
Toshikazu Nakamura12173251374
Toshio Hirano12040155721
Li-Jun Wan11363952128
Wenbin Lin11347456786
Xiaoming Li113193272445
Jinhua Ye11265849496
Terence Tao11160694316
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

96% related

Osaka University
185.6K papers, 5.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022427
20214,743
20204,805
20194,363
20184,112