scispace - formally typeset
Search or ask a question
Institution

Hokkaido University

EducationSapporo, Hokkaidô, Japan
About: Hokkaido University is a education organization based out in Sapporo, Hokkaidô, Japan. It is known for research contribution in the topics: Catalysis & Population. The organization has 53925 authors who have published 115403 publications receiving 2651647 citations. The organization is also known as: Hokudai & Hokkaidō daigaku.
Topics: Catalysis, Population, Gene, Virus, Oxide


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the transmetalation between diboron and [Cu(Cl)OAc]K was proposed as the key step in the reactions because CuOAc similarly mediated both addition reactions to enones and alkynes in the presence of LiCl.

277 citations

Journal ArticleDOI
TL;DR: The results indicate that many schizophrenics show difficulties in voluntary control of saccades, suggesting a dysfunction of the frontal cortex.

277 citations

Journal ArticleDOI
TL;DR: The real-time tumor-tracking radiotherapy system was useful to analyze the movement of an internal marker and treatment with megavoltage X-rays was properly given when the tumor marker moved into the "permitted dislocation" zone from the planned position.
Abstract: Purpose: External radiotherapy for lung tumors requires reducing the uncertainty due to setup error and organ motion. We investigated the three-dimensional movement of lung tumors through an inserted internal marker using a real-time tumor-tracking system and evaluated the efficacy of this system at reducing the internal margin. Methods and Materials: Four patients with lung cancer were analyzed. A 2.0-mm gold marker was inserted into the tumor. The real-time tumor-tracking system calculates and stores three-dimensional coordinates of the marker 30 times/s. The system can trigger the linear accelerator to irradiate the tumor only when the marker is located within the predetermined “permitted dislocation.” The value was set at ±1 to ±3 mm according to the patient’s characteristics. We analyzed 10,413–14,893 data sets for each of the 4 patients. The range of marker movement during normal breathing (beam-off period) was compared with that during gated irradiation (beam-on period) by Student’s t test. Results: The range of marker movement during the beam-off period was 5.5–10.0 mm in the lateral direction (x), 6.8–15.9 mm in the craniocaudal direction (y) and 8.1–14.6 mm in the ventrodorsal direction (z). The range during the beam-on period was reduced to within 5.3 mm in all directions in all 4 patients. A significant difference was found between the mean of the range during the beam-off period and the mean of the range during the beam-on period in the x (p = 0.007), y (p = 0.025), and z (p = 0.002) coordinates, respectively. Conclusion: The real-time tumor-tracking radiotherapy system was useful to analyze the movement of an internal marker. Treatment with megavoltage X-rays was properly given when the tumor marker moved into the “permitted dislocation” zone from the planned position.

277 citations

Journal ArticleDOI
TL;DR: The mechanism by which nanoscaled materials promote new bone formation was explained and the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed.
Abstract: It has been demonstrated that nanostructured materials, compared with conventional materials, may promote greater amounts of specific protein interactions, thereby more efficiently stimulating new bone formation. It has also been indicated that, when features or ingredients of scaffolds are nanoscaled, a variety of interactions can be stimulated at the cellular level. Some of those interactions induce favorable cellular functions while others may leads to toxicity. This review presents the mechanism of interactions between nanoscaled materials and cells and focuses on the current research status of nanostructured scaffolds for bone tissue engineering. Firstly, the main requirements for bone tissue engineering scaffolds were discussed. Then, the mechanism by which nanoscaled materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed.

277 citations


Authors

Showing all 54156 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Yi Cui2201015199725
John F. Hartwig14571466472
Yoshihiro Kawaoka13988375087
David Y. Graham138104780886
Takashi Kadowaki13787389729
Kazunari Domen13090877964
Susumu Kitagawa12580969594
Toshikazu Nakamura12173251374
Toshio Hirano12040155721
Li-Jun Wan11363952128
Wenbin Lin11347456786
Xiaoming Li113193272445
Jinhua Ye11265849496
Terence Tao11160694316
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

96% related

Osaka University
185.6K papers, 5.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022427
20214,744
20204,805
20194,363
20184,112