scispace - formally typeset
Search or ask a question
Institution

Hokkaido University

EducationSapporo, Hokkaidô, Japan
About: Hokkaido University is a education organization based out in Sapporo, Hokkaidô, Japan. It is known for research contribution in the topics: Population & Catalysis. The organization has 53925 authors who have published 115403 publications receiving 2651647 citations. The organization is also known as: Hokudai & Hokkaidō daigaku.
Topics: Population, Catalysis, Gene, Transplantation, Virus


Papers
More filters
Journal ArticleDOI
TL;DR: The lateral backing and postbuckling behaviour of the intact and injured whole human lumbar spine was experimentally studied using six fresh cadaveric specimens and the model was demonstrated to be in excellent agreement with the experimental results.

261 citations

Journal ArticleDOI
TL;DR: In this paper, a two-mode (de)multiplexer based on Si nanowire for mode-division multiplexing is designed, which is composed of two multimode interference (MMI) waveguides and a butterfly-shape tapered phase shifter between two MMI waveguiders.
Abstract: A compact two-mode (de)multiplexer (TM-MUX) based on Si nanowire for mode-division multiplexing is designed. The TM-MUX is composed of two multimode interference (MMI) waveguides and a butterfly-shape tapered phase shifter between two MMI waveguides. Numerical simulations show that the designed device is compact compared with conventional-mode (de)multiplexer and operates as a TM-MUX in the whole C-band. In addition, we show that the designed TM-MUX has relatively good fabrication tolerance.

260 citations

Journal ArticleDOI
TL;DR: Results suggest that the GluRδ2 is involved in the stabilization and strengthening of synaptic connectivity between PFs and PCs, leading to the association of all PC spines with PF terminals to form functionally mature synapses.
Abstract: The glutamate receptor δ2 subunit (GluRδ2) is specifically expressed in cerebellar Purkinje cells (PCs) from early developmental stages and is selectively localized at dendritic spines forming synapses with parallel fibers (PFs). Targeted disruption of the GluRδ2 gene leads to a significant reduction of PF→PC synapses. To address its role in the synaptogenesis, the morphology and electrophysiology of PF→PC synapses were comparatively examined in developing GluRδ2 mutant and wild-type cerebella. PCs in GluRδ2 mutant mice were normally produced, migrated, and formed spines, as did those in wild-type mice. At the end of the first postnatal week, 74–78% of PC spines in both mice formed immature synapses, which were characterized by small synaptic contact, few synaptic vesicles, and incomplete surrounding by astroglial processes, eliciting little electrophysiological response. During the second and third postnatal weeks when spines and terminals are actively generated, the percentage of PC spines forming synapses attained 98–99% in wild type but remained as low as 55–60% in mutants, and the rest were unattached to any nerve terminals. As a result, the number of PF synapses per single-mutant PCs was reduced to nearly a half-level of wild-type PCs. Parallelly, PF stimulation less effectively elicited EPSCs in mutant PCs than in wild-type PCs during and after the second postnatal week. These results suggest that the GluRδ2 is involved in the stabilization and strengthening of synaptic connectivity between PFs and PCs, leading to the association of all PC spines with PF terminals to form functionally mature synapses.

260 citations

Journal ArticleDOI
TL;DR: The results suggest that regional patterns of brain DA and 5-HT activation after physical and psychological stress depend on the intensity of that stress, although there are some differences between these stress; and that the more widespread activation of DA and5-HT after more severe stress might relate to behavioral changes that reflect the augmentation of fear.
Abstract: The present study examined whether regional patterns of brain dopamine (DA) and serotonin (5-HT) activation after physical and psychological stress depend on the intensity of that stress. Monoamine concentrations (DA, 5-HT, and their metabolites) were measured using high-performance liquid chromatography with electrochemical detection in eight brain regions of rats exposed to two different intensities of foot shock stress for 30 min (1.5 mA or 2.5 mA) or conditioned fear stress (CFS, after single or repeated foot shock). A low level of foot shock selectively increased the DA metabolism in the medial prefrontal cortex (mPFC), whereas a high level of foot shock increased it in most of the brain regions examined in the present study. A low level of foot shock did not increase the 5-HT metabolism in any regions, but a high-intensity shock increased the 5-HT metabolism in the mPFC, nucleus accumbens, and lateral hypothalamus. Rats that received high-intensity shock displayed more freezing than those that received low-intensity shock in a conditioned fear paradigm (24 h after receiving foot shock, the animals were placed in a shock chamber without being given shock), indicating an augmentation of conditioned fear. The increased DA and 5-HT metabolism were especially marked in the mPFC after CFS following a single foot shock session (2.5 mA). Rats that were repeatedly exposed to 2.5 mA foot shock for a period of 10 days displayed a greater degree of freezing induced by CFS than those given only one foot shock session, indicating an augmentation of fear and stress intensity. CFS after repeated foot shock, like foot shock per se, increased the DA metabolism in most of the brain regions except for the striatum and increased the 5-HT metabolism in the mPFC, nucleus accumbens, and amygdala. These results suggest that regional patterns of brain DA and 5-HT activation after physical and psychological stress depend on the intensity of that stress, although there are some differences between these stress; and that the more widespread activation of DA and 5-HT after more severe stress might relate to behavioral changes that reflect the augmentation of fear.

260 citations

Journal ArticleDOI
04 Jul 2013-Oncogene
TL;DR: In this paper, the authors show that mutant p53 exerts oncogenic functions and promotes EMT in endometrial cancer (EC) by directly binding to the promoter of miR130b (a negative regulator of ZEB1) and inhibiting its transcription.
Abstract: The tumor suppressor gene p53 has been implicated in the regulation of epithelial–mesenchymal transition (EMT) and tumor metastasis by regulating microRNA (miRNA) expression. Here, we report that mutant p53 exerts oncogenic functions and promotes EMT in endometrial cancer (EC) by directly binding to the promoter of miR-130b (a negative regulator of ZEB1) and inhibiting its transcription. We transduced p53 mutants into p53-null EC cells, profiled the miRNA expression by miRNA microarray and identified miR-130b as a potential target of mutant p53. Ectopic expression of p53 mutants repressed the expression of miR-130b and triggered ZEB1-dependent EMT and cancer cell invasion. Loss of an endogenous p53 mutation increased the expression of miR-130b, which resulted in reduced ZEB1 expression and attenuation of the EMT phenotype. Furthermore, re-expression of miR-130b suppressed mutant p53-induced EMT and ZEB1 expression. Importantly, the expression of miR-130 was significantly reduced in EC tissues, and patients with higher expression levels of miR-130b survived longer. These data provide a novel understanding of the roles of p53 gain-of-function mutations in accelerating tumor progression and metastasis through modulation of the miR-130b–ZEB1 axis.

260 citations


Authors

Showing all 54156 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Yi Cui2201015199725
John F. Hartwig14571466472
Yoshihiro Kawaoka13988375087
David Y. Graham138104780886
Takashi Kadowaki13787389729
Kazunari Domen13090877964
Susumu Kitagawa12580969594
Toshikazu Nakamura12173251374
Toshio Hirano12040155721
Li-Jun Wan11363952128
Wenbin Lin11347456786
Xiaoming Li113193272445
Jinhua Ye11265849496
Terence Tao11160694316
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

96% related

Osaka University
185.6K papers, 5.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022427
20214,743
20204,805
20194,363
20184,112