scispace - formally typeset
Search or ask a question
Institution

Hokkaido University

EducationSapporo, Hokkaidô, Japan
About: Hokkaido University is a education organization based out in Sapporo, Hokkaidô, Japan. It is known for research contribution in the topics: Population & Catalysis. The organization has 53925 authors who have published 115403 publications receiving 2651647 citations. The organization is also known as: Hokudai & Hokkaidō daigaku.
Topics: Population, Catalysis, Gene, Transplantation, Virus


Papers
More filters
Journal ArticleDOI
TL;DR: Several microorganisms capable of utilizing 1-aminocyclopropane-1-carboxylate (ACPC) were isolated from soil and it was suggested that this enzyme was a pyridoxal 5′-phosphate enzyme which has the molecular weight of 104000 and high specificity for ACPC.
Abstract: Several microorganisms capable of utilizing 1-aminocyclopropane-1-carboxylate (ACPC) were isolated from soil. A bacterium which belongs to Pseudomonas accumulated cellular α-aminobutyrate with consumption of ACPC and cells incubated with ACPC medium had the activity deaminating the substrate to form α-ketobutyrate. An enzyme, ACPC deaminase, was highly purified and its molecular weight, substrate specificity and absorption spectrum were investigated. These results suggested that this enzyme was a pyridoxal 5′-phosphate enzyme which has the molecular weight of 104000 and high specificity for ACPC, Km= 1.5 mM. A yeast, Hansenula saturnus, is also capable of forming ACPC deaminase, which has a lower molecular weight, 69000, and higher Km value, 2.6 mM.

610 citations

Journal ArticleDOI
TL;DR: The latitudinal gradient of community metabolic rate for net zooplankton in the ocean is estimated, emphasizing the non-parallelism between community metabolic rates and the standing stock of net zoopsalankton.
Abstract: The metabolic rates (oxygen uptake, ammonia excretion, phosphate excretion) of epipelagic marine zooplankton have been expressed as a function of body mass (dry, carbon, nitrogen and phosphorus weights) and habitat temperature, using the multiple-regression method. Zooplankton data used for this analysis are from phylogenetically mixed groups (56 to 143 species, representing 7 to 8 phyla, body mass range: 6 orders of magnitude) from various latitudes (habitat temperature range:-1.4° to 30°C). The results revealed that 84 to 96% of variation in metabolic rates is due to body mass and habitat temperature. Among the various body-mass units, the best correlation was provided by carbon and nitrogen units for all three metabolic rates. Oxygen uptake, ammonia excretion and phosphate excretion are all similar in terms of body-mass effect, but differ in terms of temperature effect. With carbon or nitrogen body-mass units, calculated Q10 values are 1.82 to 1.89 for oxygen uptake, 1.91 to 1.93 for ammonia excretion and 1.55 for phosphate excretion. The effects of body mass and habitat temperature on the metabolic quotients (O:N, N:P, O:P) are insignificant. The present results for oxygen-uptake rate vs body mass do not differ significantly from those reported for general poikilotherms by Hemmingsen and for crustaceans by Ivleva at a comparable temperature (20°C). The importance of a body-mass measure for meaningful comparison is suggested by the evaluation of the habitat-temperature effect between mixed taxonomic groups and selected ones. Considering the dominant effects of body mass and temperature on zooplankton metabolic rates, the latitudinal gradient of community metabolic rate for net zooplankton in the ocean is estimated, emphasizing the non-parallelism between community metabolic rates and the standing stock of net zooplankton.

604 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated 29 Si nuclear magnetic resonance (MAS-NMR) spectroscopy experiments with Li, sodium and potassium silicate glasses containing 20−56 mol% alkali oxide and determined the distribution of SiO 4 structural units as a function of composition.
Abstract: Lithium, sodium and potassium silicate glasses containing 20–56 mol% alkali oxide were investigated by 29 Si nuclear magnetic resonance (MAS-NMR) spectroscopy. In the spectrum of each sample, at least two to four distinct peaks were identified. The distributions of SiO 4 structural units, Q n , where n is the number of bridging oxygen atoms bound to other Si atoms, were determined as a function of composition. The equilibrium constants of the reactions, 2Q n ⇌ Q n −1 + Q n +1 ( n = 3, 2, 1), were determined. The reaction proceeds to the right direction as cationic power of alkali ion ( Z / r ) increases (Li + >Na + >K + ) at the same alkali oxide concentration. The apparent equilibrium constants of the above reactions are discussed along with a proposed thermodynamic model. The 29 Si chemical shifts assigned to each structural unit increase linearly with alkali oxide contents. The slope of these lines decreases as the numbers of attached bridging oxygen (BO) atoms decrease. The average chemical shifts also increase linearly with an increase of alkali content. A close relationship between the average chemical shifts and the theoretical optical basicity was observed.

601 citations

Journal ArticleDOI
TL;DR: In this paper, the structure and orientation of water molecules at a highly ordered Au(111) electrode surface in perchloric acid have been investigated in-situ as a function of applied potential by means of surface-enhanced infrared absorption spectroscopy.
Abstract: The structure and orientation of water molecules at a highly ordered Au(111) electrode surface in perchloric acid have been investigated in-situ as a function of applied potential by means of surface-enhanced infrared absorption spectroscopy. This newly developed infrared spectroscopy technique enables the observation of the electrode/electrolyte interface at a very high sensitivity without interference from the bulk solution. The spectrum of the interfacial water significantly differs from that of bulk water and drastically changes in peak frequencies and band widths around the potential of zero charge (pzc) of the electrode and at about 0.3 V positive from the pzc. The interfacial water molecules are weakly hydrogen-bonded at potentials below the pzc and form a strongly hydrogen-bonded ice-like structure at potentials slightly above the pzc. The ice-like structure is broken at more positive potentials due to the specific adsorption of perchlorate ion, where one OH moiety of water is non-hydrogen-bonded ...

601 citations

Journal ArticleDOI
TL;DR: It is proposed that electron transfer from the anionic Au cores of Au:PVP into the LUMO (pi*) of O(2) generates superoxo- or peroxo -like species, which plays a key role in the oxidation of alcohol.
Abstract: Au clusters smaller than 1.5 nm and stabilized by poly(N-vinyl-2-pyrrolidone) (PVP) showed higher activity for aerobic oxidation of alcohol than those of larger size or stabilized by poly(allylamine) (PAA). X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy of adsorbed CO, and X-ray absorption near edge structure measurements revealed that the catalytically active Au clusters are negatively charged by electron donation from PVP, and the catalytic activity is enhanced with increasing electron density on the Au core. Based on similar observations of Au cluster anions in the gas phase, we propose that electron transfer from the anionic Au cores of Au:PVP into the LUMO (pi*) of O(2) generates superoxo- or peroxo-like species, which plays a key role in the oxidation of alcohol. On the basis of these results, a simple principle is presented for the synthesis of Au oxidation catalysts stabilized by organic molecules.

601 citations


Authors

Showing all 54156 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Yi Cui2201015199725
John F. Hartwig14571466472
Yoshihiro Kawaoka13988375087
David Y. Graham138104780886
Takashi Kadowaki13787389729
Kazunari Domen13090877964
Susumu Kitagawa12580969594
Toshikazu Nakamura12173251374
Toshio Hirano12040155721
Li-Jun Wan11363952128
Wenbin Lin11347456786
Xiaoming Li113193272445
Jinhua Ye11265849496
Terence Tao11160694316
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

96% related

Osaka University
185.6K papers, 5.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022427
20214,743
20204,805
20194,363
20184,112