scispace - formally typeset
Search or ask a question
Institution

Hokkaido University

EducationSapporo, Hokkaidô, Japan
About: Hokkaido University is a education organization based out in Sapporo, Hokkaidô, Japan. It is known for research contribution in the topics: Population & Catalysis. The organization has 53925 authors who have published 115403 publications receiving 2651647 citations. The organization is also known as: Hokudai & Hokkaidō daigaku.
Topics: Population, Catalysis, Gene, Transplantation, Virus


Papers
More filters
Journal ArticleDOI
16 May 2013-ACS Nano
TL;DR: AuNPs are effective vaccine adjuvants and enhance the immune response via different cytokine pathways depending on their sizes and shapes, and the mechanisms of the shape-dependent WNVE antibody production are examined.
Abstract: This paper demonstrates how the shape and size of gold nanoparticles (AuNPs) affect immunological responses in vivo and in vitro for the production of antibodies for West Nile virus (WNV). We prepared spherical (20 and 40 nm in diameter), rod (40 × 10 nm), and cubic (40 × 40 × 40 nm) AuNPs as adjuvants and coated them with WNV envelope (E) protein. We measured anti-WNVE antibodies after inoculation of these WNVE-coated AuNPs (AuNP-Es) into mice. The 40 nm spherical AuNP-Es (Sphere40-Es) induced the highest level of WNVE-specific antibodies, while rod AuNP-Es (Rod-Es) induced only 50% of that of Sphere40-E. To examine the mechanisms of the shape-dependent WNVE antibody production, we next measured the efficiency of cellular uptake of AuNP-Es into RAW264.7 macrophage cells and bone-marrow-derived dendritic cells (BMDCs) and the subsequent cytokine secretion from BMDCs. The uptake of Rod-Es into the cells proceeded more efficiently than those of Sphere-Es or cubic WNVE-coated AuNPs (Cube-Es), suggesting that...

495 citations

Journal ArticleDOI
Keiji Tanaka1
TL;DR: Physical characteristics seemingly governed by the topo­ logical bonding structure, which involves a hierarchy of correlation ranges, from short to medium are discussed.
Abstract: The composition dependence of the structural and electronic properties in chalcogenide glasses suggests that there exists a structural phase transition at the average coordination number of 2.67. Materials having smaller coordination numbers are characterized by molecular structures, and otherwise three-dimensional networks govern the properties. The result is discussed in light of topological and percolative arguments.

493 citations

Journal ArticleDOI
19 Feb 1988-Science
TL;DR: A resolution of the normal human c-H-ras oncogene protein lacking a flexible carboxyl-terminal 18 residue reveals that the protein consists of a six-stranded beta sheet, four alpha helices, and nine connecting loops that indicate additional regions in the molecule that may possibly participate in other cellular functions.
Abstract: The crystal structure at 2.7 A resolution of the normal human c-H-ras oncogene protein lacking a flexible carboxyl-terminal 18 residue reveals that the protein consists of a six-stranded beta sheet, four alpha helices, and nine connecting loops. Four loops are involved in interactions with bound guanosine diphosphate: one with the phosphates, another with the ribose, and two with the guanine base. Most of the transforming proteins (in vivo and in vitro) have single amino acid substitutions at one of a few key positions in three of these four loops plus one additional loop. The biological functions of the remaining five loops and other exposed regions are at present unknown. However, one loop corresponds to the binding site for a neutralizing monoclonal antibody and another to a putative "effector region"; mutations in the latter region do not alter guanine nucleotide binding or guanosine triphosphatase activity but they do reduce the transforming activity of activated proteins. The data provide a structural basis for understanding the known biochemical properties of normal as well as activated ras oncogene proteins and indicate additional regions in the molecule that may possibly participate in other cellular functions.

492 citations

Journal ArticleDOI
TL;DR: It is suggested that the bipartite structure of CTD regulates RIG-I on encountering viral RNA patterns and CTD coincides with the autorepression domain.

491 citations


Authors

Showing all 54156 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Yi Cui2201015199725
John F. Hartwig14571466472
Yoshihiro Kawaoka13988375087
David Y. Graham138104780886
Takashi Kadowaki13787389729
Kazunari Domen13090877964
Susumu Kitagawa12580969594
Toshikazu Nakamura12173251374
Toshio Hirano12040155721
Li-Jun Wan11363952128
Wenbin Lin11347456786
Xiaoming Li113193272445
Jinhua Ye11265849496
Terence Tao11160694316
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

96% related

Osaka University
185.6K papers, 5.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022427
20214,743
20204,805
20194,363
20184,112