scispace - formally typeset
Search or ask a question
Institution

Hokkaido University

EducationSapporo, Hokkaidô, Japan
About: Hokkaido University is a education organization based out in Sapporo, Hokkaidô, Japan. It is known for research contribution in the topics: Population & Catalysis. The organization has 53925 authors who have published 115403 publications receiving 2651647 citations. The organization is also known as: Hokudai & Hokkaidō daigaku.
Topics: Population, Catalysis, Gene, Transplantation, Virus


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the rejection of organic micropollutants such as disinfection byproducts (DBPs), endocrine disrupting compounds (EDCs), and pharmaceutically active compounds (PhACs) by nanofiltration and reverse osmosis (RO) membranes as a function of their physico-chemical properties and initial feed water concentration.

424 citations

Journal ArticleDOI
Yan-Xia Chen1, Atsushi Miki1, Shen Ye1, Hidetada Sakai1, Masatoshi Osawa1 
TL;DR: A near proportional relationship between the intensity of the IR band of the formate species and MeOH electro-oxidation current is observed and a new reaction scheme via non-CO pathway with formate as the active intermediate is proposed for the methanol electro-Oxidation process.
Abstract: The electro-oxidation of methanol on a Pt thin film electrode in acidic solution has been investigated by in situ surface-enhanced IR absorption spectroscopy. A new IR peak is observed at around 1320 cm-1 when the electrode potential is more positive than 0.5 V, where the bulk oxidation of MeOH occurs. This peak has been assigned to the symmetric stretching of formate species adsorbed on the Pt electrode surface. It is the first observation of formate adsorption during the electro-oxidation of methanol on a Pt surface. A near proportional relationship between the intensity of the IR band of the formate species and MeOH electro-oxidation current is observed. A new reaction scheme via non-CO pathway with formate as the active intermediate is proposed for the methanol electro-oxidation process.

423 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that N doping occurs upon the oxidation of ammonia included in titanium hydroxide with lattice oxygen in TiO 2, which is similar to impurity doping such as metal ion doping.
Abstract: Titanium dioxide powders prepared by a wet method, i.e., the hydrolysis of titanium tetra-isopropoxide or titanium tetrachloride with an aqueous ammonia solution, followed by calcination at temperatures above 330 °C, exhibit photocatalytic activity in the visible-light region owing to N doping. The maximum absorption of visible light by the N-doped TiO 2 was about 50% at around 440 nm. Thermal analysis revealed that N doping occurs upon the oxidation of ammonia included in titanium hydroxide with lattice oxygen in TiO 2 . XPS analysis showed that the N doped in TiO 2 is less than 1.3 at.% and is not bound directly to Ti. The oxidation state of doped N was found close to that of NO. Quantum yield for the CO photooxidation on the N-doped TiO 2 in the visible region was less than that in UV region. These results show that the N doping by the wet method is similar to impurity doping such as metal ion doping.

423 citations

Journal ArticleDOI
TL;DR: The role of TAMs in human malignant tumors and the cell–cell interactions between TAMs and tumor cells are discussed.
Abstract: The fact that various immune cells, including macrophages, can be found in tumor tissue has long been known. With the recent introduction of the novel concept of macrophage differentiation into a classically activated phenotype (M1) and an alternatively activated phenotype (M2), the role of tumor-associated macrophages (TAMs) is gradually beginning to be elucidated. Specifically, in human malignant tumors, TAMs that have differentiated into M2 macrophages act as “protumoral macrophages” and contribute to the progression of disease. Based on recent basic and preclinical research, TAMs that have differentiated into protumoral or M2 macrophages are believed to be intimately involved in the angiogenesis, immunosuppression, and activation of tumor cells. In this paper, we specifically discuss both the role of TAMs in human malignant tumors and the cell–cell interactions between TAMs and tumor cells.

423 citations

Journal ArticleDOI
TL;DR: It is suggested that the BCG-CWS induces TNF-α secretion from DC via TLR2 and TLR4 and that the secreted T NF-α induces the maturation of DC per se.
Abstract: The constituents of mycobacteria are an effective immune adjuvant, as observed with complete Freund's adjuvant. In this study, we demonstrated that the cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin (BCG-CWS), a purified noninfectious material consisting of peptidoglycan, arabinogalactan, and mycolic acids, induces maturation of human dendritic cells (DC). Surface expression of CD40, CD80, CD83, and CD86 was increased by BCG-CWS on human immature DC, and the effect was similar to those of interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha), heat-killed BCG, and viable BCG. BCG-CWS induced the secretion of TNF-alpha, IL-6, and IL-12 p40. CD83 expression was increased by a soluble factor secreted from BCG-CWS-treated DC and was completely inhibited by monoclonal antibodies against TNF-alpha. BCG-CWS-treated DC stimulated extensive allogeneic mixed lymphocyte reactions. The level of TNF-alpha secreted through BCG-CWS was partially suppressed in murine macrophages with no Toll-like receptor 2 (TLR 2) or TLR4 and was completely lost in TLR2 and TLR4 double-deficient macrophages. These results suggest that the BCG-CWS induces TNF-alpha secretion from DC via TLR2 and TLR4 and that the secreted TNF-alpha induces the maturation of DC per se.

423 citations


Authors

Showing all 54156 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Yi Cui2201015199725
John F. Hartwig14571466472
Yoshihiro Kawaoka13988375087
David Y. Graham138104780886
Takashi Kadowaki13787389729
Kazunari Domen13090877964
Susumu Kitagawa12580969594
Toshikazu Nakamura12173251374
Toshio Hirano12040155721
Li-Jun Wan11363952128
Wenbin Lin11347456786
Xiaoming Li113193272445
Jinhua Ye11265849496
Terence Tao11160694316
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

96% related

Osaka University
185.6K papers, 5.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022427
20214,743
20204,805
20194,363
20184,112