scispace - formally typeset
Search or ask a question
Institution

Hokkaido University

EducationSapporo, Hokkaidô, Japan
About: Hokkaido University is a education organization based out in Sapporo, Hokkaidô, Japan. It is known for research contribution in the topics: Catalysis & Population. The organization has 53925 authors who have published 115403 publications receiving 2651647 citations. The organization is also known as: Hokudai & Hokkaidō daigaku.
Topics: Catalysis, Population, Gene, Virus, Oxide


Papers
More filters
Journal ArticleDOI
TL;DR: Three kinds of novel hydrogels with excellent mechanical performance have been developed, based on different concepts, and one has a high modulus (sub-megapascal), with a failure compressive stress as high as 20 MPa, through a double network structure.

411 citations

Journal ArticleDOI
TL;DR: Two types of probes are added to monitor the activity balance between guanine nucleotide exchange factors and GTPase-activating proteins to visualize the complex spatio-temporal regulation of Rho-family GTPases during cell division.
Abstract: Rho-family GTPases regulate many cellular functions. To visualize the activity of Rho-family GTPases in living cells, we developed fluorescence resonance energy transfer (FRET)-based probes for Rac1 and Cdc42 previously (Itoh, R.E., K. Kurokawa, Y. Ohba, H. Yoshizaki, N. Mochizuki, and M. Matsuda. 2002. Mol. Cell. Biol. 22:6582-6591). Here, we added two types of probes for RhoA. One is to monitor the activity balance between guanine nucleotide exchange factors and GTPase-activating proteins, and another is to monitor the level of GTP-RhoA. Using these FRET probes, we imaged the activities of Rho-family GTPases during the cell division of HeLa cells. The activities of RhoA, Rac1, and Cdc42 were high at the plasma membrane in interphase, and decreased rapidly on entry into M phase. From after anaphase, the RhoA activity increased at the plasma membrane including cleavage furrow. Rac1 activity was suppressed at the spindle midzone and increased at the plasma membrane of polar sides after telophase. Cdc42 activity was suppressed at the plasma membrane and was high at the intracellular membrane compartments during cytokinesis. In conclusion, we could use the FRET-based probes to visualize the complex spatio-temporal regulation of Rho-family GTPases during cell division.

411 citations

Journal ArticleDOI
TL;DR: The distinct changes in the cell position and morphology suggest that both the migration and transformation of radial glia cells begin in the spinal cord between E13 and E15, when the active stage of neuronal migration is over.
Abstract: The glutamate transporter GLAST is localized on the cell membrane of mature astrocytes and is also expressed in the ventricular zone of developing brains. To characterize and follow the GLAST-expressing cells during development, we examined the mouse spinal cord by in situ hybridization and immunohistochemistry. At embryonic day (E) 11 and E13, cells expressing GLAST mRNA were present only in the ventricular zone, where GLAST immunoreactivity was associated with most of the cell bodies of neuroepithelial cells. In addition, GLAST immunoreactivity was detected in radial processes running through the mantle and marginal zones. From this characteristic cytology, GLAST-expressing cells at early stages were judged to be radial glia cells. At E15, cells expressing GLAST mRNA first appeared in the mantle zone, and GLAST-immunopositive punctate or reticular protrusions were formed along the radial processes. From E18 to postnatal day (P) 7, GLAST mRNA or its immunoreactivity gradually decreased from the ventricular zone and disappeared from radial processes, whereas cells with GLAST mRNA spread all over the mantle zone and GLAST-immunopositive punctate/reticular protrusions predominated in the neuropils. At P7, GLAST-expressing cells were immunopositive for glial fibrillary acidic protein, an intermediate filament specific to astrocytes. Therefore, the glutamate transporter GLAST is expressed from radial glia through astrocytes during spinal cord development. Furthermore, the distinct changes in the cell position and morphology suggest that both the migration and transformation of radial glia cells begin in the spinal cord between E13 and E15, when the active stage of neuronal migration is over.

411 citations

Journal ArticleDOI
TL;DR: Neoxanthin and fucoxanthin were found to reduce cell viability through apoptosis induction in the human prostate cancer cells, suggesting that ingestion of leafy green vegetables and edible brown algae rich in neoxanth in and fu Coxanthin might have the potential to reduce the risk of prostate cancer.
Abstract: We investigated whether various carotenoids present in foodstuffs were potentially involved in cancer-preventing action on human prostate cancer. The effects of 15 kinds of carotenoids on the viability of three lines of human prostate cancer cells, PC-3, DU 145 and LNCaP, were evaluated. When the prostate cancer cells were cultured in a carotenoid-supplemented medium for 72 h at 20 micromol/L, 5,6-monoepoxy carotenoids, namely, neoxanthin from spinach and fucoxanthin from brown algae, significantly reduced cell viability to 10.9 and 14.9% for PC-3, 15.0 and 5.0% for DU 145, and nearly zero and 9.8% for LNCaP, respectively. Acyclic carotenoids such as phytofluene, zeta-carotene and lycopene, all of which are present in tomato, also significantly reduced cell viability. On the other hand, phytoene, canthaxanthin, beta-cryptoxanthin and zeaxanthin did not affect the growth of the prostate cancer cells. DNA fragmentation of nuclei in neoxanthin- and fucoxanthin-treated cells was detected by in situ TdT-mediated dUTP nick end labeling (TUNEL) assay. Neoxanthin and fucoxanthin were found to reduce cell viability through apoptosis induction in the human prostate cancer cells. These results suggest that ingestion of leafy green vegetables and edible brown algae rich in neoxanthin and fucoxanthin might have the potential to reduce the risk of prostate cancer.

411 citations

Journal ArticleDOI
TL;DR: The anti-diabetic potential of Pakhanbhed is revealed for the first time and this study could be helpful to develop medicinal preparations or nutraceutical and functional foods for diabetes and related symptoms.

410 citations


Authors

Showing all 54156 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Yi Cui2201015199725
John F. Hartwig14571466472
Yoshihiro Kawaoka13988375087
David Y. Graham138104780886
Takashi Kadowaki13787389729
Kazunari Domen13090877964
Susumu Kitagawa12580969594
Toshikazu Nakamura12173251374
Toshio Hirano12040155721
Li-Jun Wan11363952128
Wenbin Lin11347456786
Xiaoming Li113193272445
Jinhua Ye11265849496
Terence Tao11160694316
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

96% related

Osaka University
185.6K papers, 5.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022427
20214,744
20204,805
20194,363
20184,112