scispace - formally typeset
Search or ask a question
Institution

Hokkaido University

EducationSapporo, Hokkaidô, Japan
About: Hokkaido University is a education organization based out in Sapporo, Hokkaidô, Japan. It is known for research contribution in the topics: Population & Catalysis. The organization has 53925 authors who have published 115403 publications receiving 2651647 citations. The organization is also known as: Hokudai & Hokkaidō daigaku.
Topics: Population, Catalysis, Gene, Transplantation, Virus


Papers
More filters
Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: The artificial expression of otherwise IFN-inducible DAI (DLM-1/ZBP1) in mouse fibroblasts selectively enhances the DNA-mediated induction of type I IFN and other genes involved in innate immunity, and may offer new insight into the signalling mechanisms underlying DNA-associated antimicrobial immunity and autoimmune disorders.
Abstract: Central to innate immunity is the sensing of pathogen-associated molecular patterns by cytosolic and membrane-associated receptors. In particular, DNA is a potent activator of immune responses during infection or tissue damage, and evidence indicates that, in addition to the membrane-associated Toll-like receptor 9, an unidentified cytosolic DNA sensor(s) can activate type I interferon (IFN) and other immune responses. Here we report on a candidate DNA sensor, previously named DLM-1 (also called Z-DNA binding protein 1 (ZBP1)), for which biological function had remained unknown; we now propose the alternative name DAI (DNA-dependent activator of IFN-regulatory factors). The artificial expression of otherwise IFN-inducible DAI (DLM-1/ZBP1) in mouse fibroblasts selectively enhances the DNA-mediated induction of type I IFN and other genes involved in innate immunity. On the other hand, RNA interference of messenger RNA for DAI (DLM-1/ZBP1) in cells inhibits this gene induction programme upon stimulation by DNA from various sources. Moreover, DAI (DLM-1/ZBP1) binds to double-stranded DNA and, by doing so, enhances its association with the IRF3 transcription factor and the TBK1 serine/threonine kinase. These observations underscore an integral role of DAI (DLM-1/ZBP1) in the DNA-mediated activation of innate immune responses, and may offer new insight into the signalling mechanisms underlying DNA-associated antimicrobial immunity and autoimmune disorders.

1,595 citations

Journal ArticleDOI
Paramvir S. Dehal1, Yutaka Satou2, Robert K. Campbell3, Jarrod Chapman1, Bernard M. Degnan4, Anthony W. De Tomaso5, Brad Davidson6, Anna Di Gregorio6, Maarten D. Sollewijn Gelpke1, David Goodstein1, Naoe Harafuji6, Kenneth E. M. Hastings7, Isaac Ho1, Kohji Hotta8, Wayne Huang1, Takeshi Kawashima2, Patrick Lemaire9, Diego Martinez1, Ian A. Meinertzhagen10, Simona Necula1, Masaru Nonaka11, Nik Putnam1, Sam Rash1, Hidetoshi Saiga12, Masanobu Satake13, Astrid Terry1, Lixy Yamada2, Hong Gang Wang14, Satoko Awazu2, Kaoru Azumi15, Jeffrey L. Boore1, Margherita Branno16, Stephen T. Chin-Bow17, Rosaria DeSantis16, Sharon A. Doyle1, Pilar Francino1, David N. Keys1, David N. Keys6, Shinobu Haga8, Hiroko Hayashi8, Kyosuke Hino2, Kaoru S. Imai2, Kazuo Inaba13, Shungo Kano16, Shungo Kano2, Kenji Kobayashi2, Mari Kobayashi2, Byung In Lee1, Kazuhiro W. Makabe2, Chitra Manohar1, Giorgio Matassi16, Mónica Medina1, Yasuaki Mochizuki2, Steve Mount18, Tomomi Morishita8, Sachiko Miura8, Akie Nakayama2, Satoko Nishizaka8, Hisayo Nomoto8, Fumiko Ohta8, Kazuko Oishi8, Isidore Rigoutsos17, Masako Sano8, Akane Sasaki2, Yasunori Sasakura2, Eiichi Shoguchi2, Tadasu Shin-I8, Antoinetta Spagnuolo16, Didier Y.R. Stainier19, Miho Suzuki20, Olivier Tassy9, Naohito Takatori2, Miki Tokuoka2, Kasumi Yagi2, Fumiko Yoshizaki11, Shuichi Wada2, Cindy Zhang1, P. Douglas Hyatt21, Frank W. Larimer21, Chris Detter1, Norman A. Doggett22, Tijana Glavina1, Trevor Hawkins1, Paul G. Richardson1, Susan Lucas1, Yuji Kohara8, Michael Levine6, Nori Satoh2, Daniel S. Rokhsar6, Daniel S. Rokhsar1 
13 Dec 2002-Science
TL;DR: A draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis, is generated, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development.
Abstract: The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.

1,582 citations

Journal ArticleDOI
TL;DR: The small particle size and the ordered surface nanostep structure of the NiO/NaTaO(3):La photocatalyst powder contributed to the highly efficient water splitting into H(2) and O(2).
Abstract: NiO-loaded NaTaO3 doped with lanthanum showed a high photocatalytic activity for water splitting into H2 and O2 in a stoichiometric amount under UV irradiation. The photocatalytic activity of NiO-loaded NaTaO3 doped with lanthanum was 9 times higher than that of nondoped NiO-loaded NaTaO3. The maximum apparent quantum yield of the NiO/NaTaO3:La photocatalyst was 56% at 270 nm. The factors affecting the highly efficient photocatalytic water splitting were examined by using various characterization techniques. Electron microscope observations revealed that the particle sizes of NaTaO3:La crystals (0.1−0.7 μm) were smaller than that of the nondoped NaTaO3 crystal (2−3 μm) and that the ordered surface nanostructure with many characteristic steps was created by the lanthanum doping. The small particle size with a high crystallinity was advantageous to an increase in the probability of the reaction of photogenerated electrons and holes with water molecules toward the recombination. Transmission electron microsc...

1,548 citations

Journal ArticleDOI
TL;DR: It is reported that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and viscoelastic hydrogels with multiple mechanical properties.
Abstract: Hydrogels attract great attention as biomaterials as a result of their soft and wet nature, similar to that of biological tissues. Recent inventions of several tough hydrogels show their potential as structural biomaterials, such as cartilage. Any given application, however, requires a combination of mechanical properties including stiffness, strength, toughness, damping, fatigue resistance and self-healing, along with biocompatibility. This combination is rarely realized. Here, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and viscoelastic hydrogels with multiple mechanical properties. The randomness makes ionic bonds of a wide distribution of strength. The strong bonds serve as permanent crosslinks, imparting elasticity, whereas the weak bonds reversibly break and re-form, dissipating energy. These physical hydrogels of supramolecular structure can be tuned to change multiple mechanical properties over wide ranges by using diverse ionic combinations. This polyampholyte approach is synthetically simple and dramatically increases the choice of tough hydrogels for applications.

1,496 citations


Authors

Showing all 54156 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
Yi Cui2201015199725
John F. Hartwig14571466472
Yoshihiro Kawaoka13988375087
David Y. Graham138104780886
Takashi Kadowaki13787389729
Kazunari Domen13090877964
Susumu Kitagawa12580969594
Toshikazu Nakamura12173251374
Toshio Hirano12040155721
Li-Jun Wan11363952128
Wenbin Lin11347456786
Xiaoming Li113193272445
Jinhua Ye11265849496
Terence Tao11160694316
Network Information
Related Institutions (5)
Kyoto University
217.2K papers, 6.5M citations

97% related

University of Tokyo
337.5K papers, 10.1M citations

97% related

Nagoya University
128.2K papers, 3.2M citations

97% related

Tohoku University
170.7K papers, 3.9M citations

96% related

Osaka University
185.6K papers, 5.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022427
20214,743
20204,805
20194,363
20184,112