scispace - formally typeset
Search or ask a question
Institution

Hong Kong Polytechnic University

EducationHong Kong, China
About: Hong Kong Polytechnic University is a education organization based out in Hong Kong, China. It is known for research contribution in the topics: Tourism & Population. The organization has 29633 authors who have published 72136 publications receiving 1956312 citations. The organization is also known as: HKPU & PolyU.


Papers
More filters
Journal ArticleDOI
Wei Zeng1, Lin Shu1, Qiao Li1, Song Chen1, Fei Wang1, Xiaoming Tao1 
TL;DR: This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products.
Abstract: Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption

1,626 citations

Journal ArticleDOI
TL;DR: The suggested guidelines address three main issues: implementation, key management and security analysis, aiming at assisting designers of new cryptosystems to present their work in a more systematic and rigorous way to fulfill some basic cryptographic requirements.
Abstract: In recent years, a large amount of work on chaos-based cryptosystems have been published. However, many of the proposed schemes fail to explain or do not possess a number of features that are fundamentally important to all kind of cryptosystems. As a result, many proposed systems are difficult to implement in practice with a reasonable degree of security. Likewise, they are seldom accompanied by a thorough security analysis. Consequently, it is difficult for other researchers and end users to evaluate their security and performance. This work is intended to provide a common framework of basic guidelines that, if followed, could benefit every new cryptosystem. The suggested guidelines address three main issues: implementation, key management and security analysis, aiming at assisting designers of new cryptosystems to present their work in a more systematic and rigorous way to fulfill some basic cryptographic requirements. Meanwhile, several recommendations are made regarding some practical aspects of analog chaos-based secure communications, such as channel noise, limited bandwith and attenuation.

1,620 citations

Journal ArticleDOI
TL;DR: The early outbreak data largely follows the exponential growth and indicates the potential of 2019-nCoV to cause outbreaks, as well as the impact of the variations in disease reporting rate, modelled through theonential growth.

1,561 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship between phase stability and physicochemical/thermodynamic properties of alloying components in high entropy alloys was studied systematically and the mixing enthalpy was found to be the key factor controlling the formation of solid solutions or compounds.
Abstract: Phase stability is an important topic for high entropy alloys (HEAs), but the understanding to it is very limited. The capability to predict phase stability from fundamental properties of constituent elements would benefit the alloy design greatly. The relationship between phase stability and physicochemical/thermodynamic properties of alloying components in HEAs was studied systematically. The mixing enthalpy is found to be the key factor controlling the formation of solid solutions or compounds. The stability of fcc and bcc solid solutions is well delineated by the valance electron concentration (VEC). The revealing of the effect of the VEC on the phase stability is vitally important for alloy design and for controlling the mechanical behavior of HEAs.

1,559 citations

Book ChapterDOI
07 Oct 2012
TL;DR: A simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis that performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.
Abstract: It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. While much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, these mis-aligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis. Our appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is adopted to efficiently extract the features for the appearance model. We compress samples of foreground targets and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.

1,538 citations


Authors

Showing all 30115 results

NameH-indexPapersCitations
Jing Wang1844046202769
Xiang Zhang1541733117576
Wei Zheng1511929120209
Rui Zhang1512625107917
Jian Yang1421818111166
Joseph Lau140104899305
Yu Huang136149289209
Dacheng Tao133136268263
Chuan He13058466438
Lei Zhang130231286950
Ming-Hsuan Yang12763575091
Chao Zhang127311984711
Yuri S. Kivshar126184579415
Bin Wang126222674364
Chi-Ming Che121130562800
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

93% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

University of Hong Kong
99.1K papers, 3.2M citations

92% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

University of Waterloo
93.9K papers, 2.9M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023229
2022971
20216,743
20206,207
20195,288