scispace - formally typeset

Institution

Hong Kong University of Science and Technology

EducationHong Kong, Hong Kong, China
About: Hong Kong University of Science and Technology is a(n) education organization based out in Hong Kong, Hong Kong, China. It is known for research contribution in the topic(s): MIMO & Population. The organization has 20126 authors who have published 52428 publication(s) receiving 1965915 citation(s). The organization is also known as: HKUST & The Hong Kong University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift are discussed.
Abstract: A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.

13,267 citations

Journal ArticleDOI
TL;DR: The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.
Abstract: The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.

13,213 citations

Journal ArticleDOI
Abstract: A literature review of the use of sorbents and biosorbents to treat polluted aqueous effluents containing dyes:organics or metal ions has been conducted. Over 70 systems have been reported since 1984 and over 43 of these reported the mechanism as being a pseudo-first order kinetic mechanism. Three sorption kinetic models are presented in this paper and have been used to test 11 of the literature systems previously reported as first order kinetics and one system previously reported as a second order process. In all 12 systems, the highest correlation coefficients were obtained for the pseudo-second order kinetic model. © 1999 Elsevier Science Ireland Ltd. All rights reserved.

11,801 citations

Journal ArticleDOI
John W. Belmont1, Paul Hardenbol, Thomas D. Willis, Fuli Yu1, Huanming Yang2, Lan Yang Ch'Ang, Wei Huang3, Bin Liu2, Yan Shen3, Paul K.H. Tam4, Lap-Chee Tsui4, Mary M.Y. Waye5, Jeffrey Tze Fei Wong6, Changqing Zeng2, Qingrun Zhang2, Mark S. Chee7, Luana Galver7, Semyon Kruglyak7, Sarah S. Murray7, Arnold Oliphant7, Alexandre Montpetit8, Fanny Chagnon8, Vincent Ferretti8, Martin Leboeuf8, Michael S. Phillips8, Andrei Verner8, Shenghui Duan9, Denise L. Lind10, Raymond D. Miller9, John P. Rice9, Nancy L. Saccone9, Patricia Taillon-Miller9, Ming Xiao10, Akihiro Sekine, Koki Sorimachi, Yoichi Tanaka, Tatsuhiko Tsunoda, Eiji Yoshino, David R. Bentley11, Sarah E. Hunt11, Don Powell11, Houcan Zhang12, Ichiro Matsuda13, Yoshimitsu Fukushima14, Darryl Macer15, Eiko Suda15, Charles N. Rotimi16, Clement Adebamowo17, Toyin Aniagwu17, Patricia A. Marshall18, Olayemi Matthew17, Chibuzor Nkwodimmah17, Charmaine D.M. Royal16, Mark Leppert19, Missy Dixon19, Fiona Cunningham20, Ardavan Kanani20, Gudmundur A. Thorisson20, Peter E. Chen21, David J. Cutler21, Carl S. Kashuk21, Peter Donnelly22, Jonathan Marchini22, Gilean McVean22, Simon Myers22, Lon R. Cardon22, Andrew P. Morris22, Bruce S. Weir23, James C. Mullikin24, Michael Feolo24, Mark J. Daly25, Renzong Qiu26, Alastair Kent, Georgia M. Dunston16, Kazuto Kato27, Norio Niikawa28, Jessica Watkin29, Richard A. Gibbs1, Erica Sodergren1, George M. Weinstock1, Richard K. Wilson9, Lucinda Fulton9, Jane Rogers11, Bruce W. Birren25, Hua Han2, Hongguang Wang, Martin Godbout30, John C. Wallenburg8, Paul L'Archevêque, Guy Bellemare, Kazuo Todani, Takashi Fujita, Satoshi Tanaka, Arthur L. Holden, Francis S. Collins24, Lisa D. Brooks24, Jean E. McEwen24, Mark S. Guyer24, Elke Jordan31, Jane Peterson24, Jack Spiegel24, Lawrence M. Sung32, Lynn F. Zacharia24, Karen Kennedy29, Michael Dunn29, Richard Seabrook29, Mark Shillito, Barbara Skene29, John Stewart29, David Valle21, Ellen Wright Clayton33, Lynn B. Jorde19, Aravinda Chakravarti21, Mildred K. Cho34, Troy Duster35, Troy Duster36, Morris W. Foster37, Maria Jasperse38, Bartha Maria Knoppers39, Pui-Yan Kwok10, Julio Licinio40, Jeffrey C. Long41, Pilar N. Ossorio42, Vivian Ota Wang33, Charles N. Rotimi16, Patricia Spallone29, Patricia Spallone43, Sharon F. Terry44, Eric S. Lander25, Eric H. Lai45, Deborah A. Nickerson46, Gonçalo R. Abecasis41, David Altshuler47, Michael Boehnke41, Panos Deloukas11, Julie A. Douglas41, Stacey Gabriel25, Richard R. Hudson48, Thomas J. Hudson8, Leonid Kruglyak49, Yusuke Nakamura50, Robert L. Nussbaum24, Stephen F. Schaffner25, Stephen T. Sherry24, Lincoln Stein20, Toshihiro Tanaka 
18 Dec 2003-Nature
TL;DR: The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance the ability to choose targets for therapeutic intervention.
Abstract: The goal of the International HapMap Project is to determine the common patterns of DNA sequence variation in the human genome and to make this information freely available in the public domain. An international consortium is developing a map of these patterns across the genome by determining the genotypes of one million or more sequence variants, their frequencies and the degree of association between them, in DNA samples from populations with ancestry from parts of Africa, Asia and Europe. The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance our ability to choose targets for therapeutic intervention.

5,704 citations

Journal ArticleDOI
John W. Belmont1, Andrew Boudreau, Suzanne M. Leal1, Paul Hardenbol  +229 moreInstitutions (40)
27 Oct 2005
TL;DR: A public database of common variation in the human genome: more than one million single nucleotide polymorphisms for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted.
Abstract: Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Here we report a public database of common variation in the human genome: more than one million single nucleotide polymorphisms (SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted. These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We show how the HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and recombination, and identify loci that may have been subject to natural selection during human evolution.

5,359 citations


Authors

Showing all 20126 results

NameH-indexPapersCitations
Ruedi Aebersold182879141881
John R. Yates1771036129029
John Hardy1771178171694
Lei Jiang1702244135205
Gang Chen1673372149819
Roger Y. Tsien163441138267
Xiang Zhang1541733117576
Rui Zhang1512625107917
Ben Zhong Tang1492007116294
Michael E. Greenberg148316114317
Yi Yang143245692268
Shi-Zhang Qiao14252380888
Shuit-Tong Lee138112177112
David H. Pashley13774063657
Steven G. Louie13777788794
Network Information
Related Institutions (5)
Georgia Institute of Technology

119K papers, 4.6M citations

96% related

Tsinghua University

200.5K papers, 4.5M citations

95% related

National University of Singapore

165.4K papers, 5.4M citations

94% related

ETH Zurich

122.4K papers, 5.1M citations

94% related

Carnegie Mellon University

104.3K papers, 5.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202298
20213,789
20203,686
20193,412
20182,860
20172,741